Biophysical Characterization of a Swimmer with a Unilateral Arm Amputation: A Case Study

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Pedro Figueiredo
Search for other papers by Pedro Figueiredo in
Current site
Google Scholar
PubMed
Close
,
Renata Willig
Search for other papers by Renata Willig in
Current site
Google Scholar
PubMed
Close
,
Francisco Alves
Search for other papers by Francisco Alves in
Current site
Google Scholar
PubMed
Close
,
João Paulo Vilas-Boas
Search for other papers by João Paulo Vilas-Boas in
Current site
Google Scholar
PubMed
Close
, and
Ricardo J. Fernandes
Search for other papers by Ricardo J. Fernandes in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose:

To examine the effect of swimming speed (v) on the biomechanical and physiological responses of a trained front-crawl swimmer with a unilateral arm amputation.

Methods:

A 13-y-old girl with a unilateral arm amputation (level of the elbow) was tested for stroke length (SL, horizontal displacement cover with each stroke cycle), stroke frequency (SF, inverse of the time to complete each stroke cycle), adapted index of coordination (IdCadapt, lag time between propulsive phases), intracycle velocity variation (IVV, coefficient of variation of the instantaneous velocity–time data), active drag (D, hydrodynamic resistance), and energy cost (C, ratio of metabolic power to speed) during trials of increasing v.

Results:

Swimmer data showed a positive relationship between v and SF (R2 = 1, P < .001), IVV (R2 = .98, P = .002), D (R2 = .98, P < .001), and C (R2 = .95, P = .001) and a negative relationship with the SL (R2 = .99, P = .001). No relation was found between v and IdCadapt (R2 = .35, P = .22). A quadratic regression best fitted the relationship between v and general kinematical parameters (SL and SF); a cubic relationship fit the IVV best. The relationship between v and D was best expressed by a power regression, and the linear regression fit the C and IdCadapt best.

Conclusions:

The subject’s adaptation to increased v was different from able-bodied swimmers, mainly on interarm coordination, maintaining the lag time between propulsive phases, which influence the magnitude of the other parameters. These results might be useful to develop specific training and enhance swimming performance in swimmers with amputations.

Figueiredo, Vilas-Boas, Fernandes, and Willig are with the Center of Research, Education, Innovation and Intervention in Sport, University of Porto, Porto, Portugal. Alves is with the Faculty of Human Movement, Technical University of Lisbon, Lisbon, Portugal. Address author correspondence to Pedro Figueiredo at pedfig@me.com.

  • Collapse
  • Expand