Increasing Oxygen Uptake in Well-Trained Cross-Country Skiers During Work Intervals With a Fast Start

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.

The authors are with the Inland Norway University of Applied Sciences, Lillehammer, Norway.

Rønnestad (bent.ronnestad@inn.no) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Holmberg HC. The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sport. 2015;25:100109. PubMed ID: 26589123 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sandbakk ØHegge AMLosnegard TSkattebo ØTønnessen EHolmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48:10911100. PubMed ID: 26741124 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sandbakk ØSandbakk SBEttema GWelde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27:19741980. PubMed ID: 23037620 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sandbakk ØHolmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12:10031011. PubMed ID: 28095083 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Thevenet DTardieu-Berger MBerthoin SPrioux J. Influence of recovery mode (passive vs active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133142. PubMed ID: 17115178 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Midgley AWMcNaughton LRWilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117132. PubMed ID: 16464121 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Turnes Tde Aguiar RACruz RSCaputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116:161169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hill DWWilliams CSBurt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. J Sport Sci Med. 1997;18:325329. PubMed ID: 9298771 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Billat VBernard OPinoteau JPetit BKoralsztein JP. Time to exhaustion at VO2max and lactate steady state velocity in sub elite long-distance runners. Arch Int Physiol Biochim Biophys. 1994;102(3):215219. PubMed ID: 8000045

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rønnestad BRHansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):9991006. PubMed ID: 23942167 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Buchheit MLaursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43:313338. PubMed ID: 23539308 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ariyoshi MTanaka HKanamori Ket al. Influence of running pace upon performance: effects upon oxygen intake, blood lactate, and rating of perceived exertion. Can J Appl Sport Sci. 1979;4:210213. PubMed ID: 540415

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bishop DBonetti DDawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34:10411047. PubMed ID: 12048335 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Billat VPetot HKarp JRSarre GMorton RHMille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113:385394. PubMed ID: 22752344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lisboa FDSalvador AFRaimundo JAPereira KLde Aguiar RACaputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29:24342440. PubMed ID: 26308828 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zadow EKGordon NAbbiss CRPeiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36:215219. PubMed ID: 25415386 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Caputo FDenadai BS. Exercise mode affects the time to achieve VO2max without influencing maximal exercise time at the intensity associated with VO2max in triathletes. Int J Sports Med. 2006;27:798803. PubMed ID: 16586327 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Carter HJones AMBarstow TJBurnley MWilliams CADoust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899907. PubMed ID: 10956332 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    De Pauw KRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Sylta ØTønnessen ESeiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100107. PubMed ID: 24408353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sandbakk ØHolmberg HCLeirdahl SEttema G. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur J Appl Physiol. 2010;109:473481. PubMed ID: 20151149 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McGowan CJPyne DBThompson KGRattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Losnegard TMyklebust HHallén J. Anaerobic capacity as a determinant of performance in sprint skiing. Med Sci Sports Exerc. 2012;44:673681. PubMed ID: 21952633 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Demarie SKoralsztein JPBillat V. Time limit and time at VO2max during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40(2):96102. PubMed ID: 11034428

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 2008;14:377381.

  • 26.

    Earles DRJudge JOGunnarsson OT. Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil. 2000;82:872878. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:6570.

  • 28.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18:918920. PubMed ID: 15574101

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Aisbett BLerossignol PMcConell GKAbbiss CRSnow R. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc. 2009;41:19651971. PubMed ID: 19727014 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jones AMWilkerson DPVanhatalo ABurnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18:615626. PubMed ID: 18067518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Margaria RMangili FCuttica FCerretelli P. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics. 1965;8:4954. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Vanhatalo APoole DCDiMenna FJBailey SJJones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300:R700R707. PubMed ID: 21160059 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Spencer MLosnegard THallén JHopkins WG. Variability and predictability of performance times of elite cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):511. PubMed ID: 23799826 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Coyle EFCoggan ARHopper MKWalters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):26222630. doi:

  • 35.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:2563. PubMed ID: 7556353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Oliveira BRSlama FADeslandes ACFurtado ESSantos TM. Continuous and high-intensity interval training: which promotes higher pleasure? PLoS ONE. 2013;8:e79965. PubMed ID: 24302993 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bailey SJVanhatalo ADiMenna FJWilkerson DPJones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43:457467. PubMed ID: 20689463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Thum JSParsons GWhittle TAstorino TA. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS ONE. 2017;12(1):e0166299. PubMed ID: 28076352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Losnegard TMyklebust HSpencer MHallén J. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers. J Strength Cond Res. 2013;27(7):17801790. PubMed ID: 22996025 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fessi MSNouira SDellal AOwen AElloumi MMoalla W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res Sports Med. 2016;24(4):375386. PubMed ID: 27574867 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Leveritt MAbernethy PJ. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res. 1999;13:4751.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wiewelhove TRaeder CMeyer TKellmann MPfeiffer MFerrauti A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS ONE. 2015;10(10):e0139801. PubMed ID: 26444557 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 461 461 461
Full Text Views 42 42 42
PDF Downloads 26 26 26
Altmetric Badge
PubMed
Google Scholar