Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Rock climbing performance relies on many characteristics. Herein, the authors identified the physical and physiological determinants of peak performance in rock climbing across the range from lower grade to elite. Methods: Forty four male and 33 female climbers with onsight maximal climbing grades 5a–8a and 5a–7b+, respectively, were tested for physical, physiological, and psychological characteristics (independent variables) that were correlated and modeled by multiple regression and principal component analysis to identify the determinants of rock climbing ability. Results: In males, 23 of 47 variables correlated with climbing ability (P < .05, Pearson correlation coefficients .773–.340), including shoulder endurance, hand and finger strength, shoulder power endurance, hip flexibility, lower-arm grip strength, shoulder power, upper-arm strength, core-body endurance, upper-body aerobic endurance, hamstrings and lower-back flexibility, aerobic endurance, and open-hand finger strength. In females, 10 of 47 variables correlated with climbing ability (P < .05, Pearson correlation coefficients .742–.482): shoulder endurance and power, lower-arm grip strength, balance, aerobic endurance, and arm span. Principal component analysis and univariate multiple regression identified the main explanatory variables. In both sexes, shoulder power and endurance measured as maximum pull-ups, average arm crank power, and bent-arm hang, emerged as the main determinants (P < .01; adjusted R2 = .77 in males and .62 in females). In males, finger pincer (P = .07) and grip strength also had trends (P = .09) toward significant effects. Finally, in test-of-principle training studies, they trained to increase main determinants 42% to 67%; this improved climbing ability 2 to 3 grades. Conclusions: Shoulder power and endurance majorly determines maximal climbing. Finger, hand, and arm strength, core-body endurance, aerobic endurance, flexibility, and balance are important secondary determinants.

The authors are with the School of Life Sciences and Inst of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom.

Kemi (ole.kemi@glasgow.ac.uk) is corresponding author.
  • 1.

    Mermier CM, Robergs RA, McMinn SM, Heyward VH. Energy expenditure and physiological responses during indoor rock climbing. Br J Sports Med. 1997;31:224–228. PubMed ID: 9298558 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Booth J, Marino F, Hill C, Gwinn T. Energy cost of sport rock climbing in elite performers. Br J Sports Med. 1999;33:14–18. PubMed ID: 10027051 doi:

  • 3.

    De Geus B, Villanueva O’Driscoll S, Meeusen R. Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty. Eur J Appl Physiol. 2006;98:489–496. PubMed ID: 17021787 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Billat V, Palleja P, Charlaix T, Rizzardo P, Janel N. Energy specificity of rock climbing and aerobic capacity in competitive sport rock climbers. J Sports Med Phys Fitness. 1995;35:20–24. PubMed ID: 7474988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Laffaye G, Levernier G, Collin JM. Determinant factors in climbing ability: influence of strength, anthropometry, and neuromuscular fatigue. Scand J Med Sci Sports. 2016;26:1151–1159. PubMed ID: 26453999 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Laffaye G, Collin JM, Levernier G, Padulo J. Upper-limb power test in rock-climbing. Int J Sports Med. 2014;35:670–675. PubMed ID: 24554556 doi:

  • 7.

    Watts PB, Newbury V, Sulentic J. Acute changes in handgrip strength, endurance, and blood lactate with sustained sport rock climbing. J Sports Med Phys Fitness. 1996;36:255–260. PubMed ID: 9062048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Watts PB. Physiology of difficult rock climbing. Eur J Appl Physiol. 2004;91:361–372. PubMed ID: 14985990 doi:

  • 9.

    Draper N, Dickson T, Blackwell G, et al. Sport-specific power assessment for rock climbing. J Sports Med Phys Fitness. 2011;51:417–425. PubMed ID: 21904280

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Balas J, Panackova M, Strejcova B, et al. The relationship between climbing ability and physiological responses to rock climbing. Sci World J. 2014;27:678387.

    • Search Google Scholar
    • Export Citation
  • 11.

    Grant S, Hasler T, Davies C, Aitchison TC, Wilson J, Whittaker A. A comparison of the anthropometric, strength, endurance and flexibility characteristics of female elite and recreational climbers and non-climbers. J Sports Sci. 2001;19:499–505. PubMed ID: 11461053 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    MacLeod D, Sutherland DL, Buntin L, et al. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci. 2007;25:1433–1443. PubMed ID: 17786696 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Philippe M, Wegst D, Muller T, Raschner C, Burtscher M. Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers. Eur J Appl Physiol. 2012;112:2839–2847. PubMed ID: 22131087 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Espana-Romero V, Ortega Porcel FB, Artero EG, et al. Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers. Eur J Appl Physiol. 2009;107:517–525. PubMed ID: 19680679 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fryer S, Stoner L, Scarrott C, et al. Forearm oxygenation and blood flow kinetics during a sustained contraction in multiple ability groups of rock climbers. J Sports Sci. 2015;33:518–526. PubMed ID: 25311579 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fryer S, Stoner L, Stone K, et al. Forearm muscle oxidative capacity index predicts sport rock-climbing performance. Eur J Appl Physiol. 2016;116:1479–1484. PubMed ID: 27255506 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Watts PB, Martin DT, Durtschi S. Anthropometric profiles of elite male and female competitive sport rock climbers. J Sports Sci. 1993;11:113–117. PubMed ID: 8497013 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Watts PB, Joubert LM, Lish AK, Mash JD, Wilkins B. Anthropometry of young competitive sport rock climbers. Br J Sports Med. 2003;37:420–424. PubMed ID: 14514533 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ferguson RA, Brown MD. Arterial blood pressure and forearm vascular conductance responses to sustained and rhythmic isometric exercise and arterial occlusion in trained rock climbers and untrained sedentary subjects. Eur J Appl Physiol. 1997;76:174–180. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mermier CM, Janot JM, Parker DL, Swan JG. Physiological and anthropometric determinants of sport climbing performance. Br J Sports Med. 2000;34:359–365. PubMed ID: 11049146 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sheel AW, Seddon N, Knight A, McKenzie DC, Warburton DER. Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry. Med Sci Sports Exerc. 2003;35:1225–1231. PubMed ID: 12840646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Draper N, Dickson T, Blackwell G, et al. Self-reported ability assessment in rock climbing. J Sports Sci. 2011;29:851–858. PubMed ID: 21491325 doi:

  • 23.

    Draper N, Jones GA, Fryer S, Hodgson C, Blackwell G. Effect of an on-sight lead on the physiological and psychological responses to rock climbing. J Sports Sci Med. 2008;7:492–498. PubMed ID: 24149956

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Martens R, Vealey RS, Burton D, Bump L, Smith DE. Development and validation of the Competitive State Anxiety Inventory-2. In: Martens R, Vealey RS, Burton D, eds. Competitive Anxiety in Sport. Champaign, IL: Human Kinetics; 1990:117–178.

    • Search Google Scholar
    • Export Citation
  • 25.

    Torpel A, Becker T, Thiers A, Hamacher D, Schega L. Intersession reliability of isokinetic strength testing in knee and elbow extension and flexion using the BTE PrimusRS. J Sport Rehabil. 2017;26(4):1–14.doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Devlin J, Paton B, Poole L, et al. Blood lactate clearance after maximal exercise depends on active recovery intensity. J Sports Med Phys Fitness. 2014;54:271–278. PubMed ID: 24739289

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Limonta E, Brighenti A, Rampichini S, Ce E, Schena F, Esposito F. Cardiovascular and metabolic responses during indoor climbing and laboratory cycling exercise in advanced and élite climbers. Eur J Appl Physiol. 2018;118:371–379. PubMed ID: 29234917 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Magiera A, Roczniok R, Maszczyk A, Czuba M, Kantyka J, Kurek P. The structure of performance of a sport rock climber. J Hum Kinet. 2013;36:107–117. PubMed ID: 23717360 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bertuzzi RC, Franchini E, Kokubun E, Kiss MA. Energy system contributions in indoor rock climbing. Eur J Appl Physiol. 2007;101:293–300. PubMed ID: 17602238 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sibella F, Frosio I, Schena F, Borghese NA. 3D analysis of the body center of mass in rock climbing. Hum Mov Sci. 2007;26:841–852. PubMed ID: 17936389 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 495 495 74
Full Text Views 33 33 8
PDF Downloads 38 38 5