Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To determine the recovery kinetics of performance, muscle damage, and neuromuscular fatigue following 2 speed-endurance production training (SEPT) protocols in soccer. Methods: Ten well-trained, male soccer athletes randomly completed 3 trials: work-to-rest ratio (SEPT) 1:5, SEPT/1:8, and a control trial. Training load during SEPT was monitored using global positioning system and heart-rate monitors. Performance (isokinetic strength of knee extensors and flexors, speed, and countermovement jump) and muscle damage (delayed-onset muscle soreness [DOMS] and creatine kinase) were evaluated at baseline and at 0, 24, 48 and 72 h posttraining. Maximal voluntary contraction (fatigue index) of knee extensors and flexors was additionally assessed at 1, 2, and 3 h posttraining. Results: Fatigue increased (P < .05) in SEPT/1:5 (∼4–30%) for 3 h and in SEPT/1:8 (∼8–17%) for 2 h. Strength performance declined (P < .05) in both SEPT trials (∼5–20%) for 48 h. Speed decreased (∼4–18%; P < .05) for 72 h in SEPT/1:5 and for 48 h in SEPT/1:8. Countermovement-jump performance decreased (∼7–12%; P < .05) in both SEPT trials for 24 h. DOMS increased (P < .05) in SEPT/1:5 (∼2-fold) for 72 and in SEPT/1:8 (∼1- to 2-fold) for 48 h. Creatine kinase increased (∼1- to 2-fold, P < .05) in both SEPT trials for 72 h. Conclusions: SEPT induces short-term neuromuscular fatigue; provokes a prolonged deterioration of strength (48 h), speed (72 h), and jump performance (24 h); and is associated with a prolonged (72-h) rise of DOMS and creatine kinase. Time for recovery is reduced when longer work-to-rest ratios are applied. Fitness status may affect quality of SEPT and recovery kinetics.

Tzatzakis, Papanikolaou, Draganidis, Tsimeas, Kritikos, Poulios, Laschou, Deli, Batrakoulis, Basdekis, Jamurtas, and Fatouros are with the School of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece. Chatzinikolaou is with the School of Physical Education and Sport Sciences, Democritus University of Thrace, Komotini, Greece. Mohr and Krustrup are with the Dept of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark. Mohr is also with the Center of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands. Krustrup is also with Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.

Fatouros (ifatouros@pe.uth.gr) is corresponding author.
  • 1.

    Bradley PS, Sheldon W, Wooster B, Olsen P, Boanas P, Krustrup P. High-intensity running in English FA Premier League soccer matches. J Sports Sci. 2009;27:159–168. PubMed ID: 19153866 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Mohr M, Draganidis D, Chatzinikolaou A, et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol. 2016;116:179–193. PubMed ID: 26377004 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38:1165–1174. PubMed ID: 16775559 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mohr M, Krustrup P. Comparison between two types of anaerobic speed endurance training in competitive soccer players. J Hum Kinet. 2016;51:183–192. PubMed ID: 28149381 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Fransson D, Vigh-Larsen JF, Fatouros IG, Krustrup P, Mohr M. Fatigue responses in various muscle groups in well-trained competitive male players after a simulated soccer game. J Hum Kinet. 2018;61:85–97. PubMed ID: 29599862 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Fransson D, Nielsen TS, Olsson K, etal. Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training. Eur J Appl Physiol. 2018;118(1):111–121. PubMed ID: 29119246 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41:673–694. PubMed ID: 21780851 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ingebrigtsen J, Shalfawi SA, Tonnessen E, Krustrup P, Holtermann A. Performance effects of 6 weeks of aerobic production training in junior elite soccer players. J Strength Cond Res. 2013;27(7):1861–1867. PubMed ID: 23552340 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Silva JR, Ascensao A, Marques F, Seabra A, Rebelo A, Magalhaes J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol. 2013;113(9):2193–2201. PubMed ID: 23661147 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fatouros IG, Chatzinikolaou A, Douroudos II, et al. Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J Strength Cond Res. 2010;24(12):3278–3286. PubMed ID: 19996787 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Fatouros IG, Jamurtas AZ. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res. 2016;9:175–186. PubMed ID: 27799809 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gunnarsson TP, Christensen PM, Holse K, Christiansen D, Bangsbo J. Effect of additional speed endurance training on performance and muscle adaptations. Med Sci Sports Exerc. 2012;44(10):1942–1948. PubMed ID: 22617392 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1594–R1602. PubMed ID: 17194727 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bangsbo J, Mohr M. Individual Training in Football. Copenhagen, Denmark: Bangsbosport; 2014:1–144.

  • 15.

    Poulios A, Fatouros IG, Mohr M, et al. Post-game high protein intake may improve recovery of football-specific performance during a congested game fixture: results from the PRO-FOOTBALL study. Nutrients. 2018;10(4):494. PubMed ID: 29659539 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Draganidis D, Jamurtas AZ, Stampoulis T, et al. Disparate habitual physical activity and dietary intake profiles of elderly men with low and elevated systemic inflammation. Nutrients. 2018;10(5):E566. PubMed ID: 29734698 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Krustrup P, Bradley PS, Christensen JF, et al. The Yo-Yo IE2 test: physiological response for untrained men versus trained soccer players. Med Sci Sports Exerc. 2015;47(1):100–108. PubMed ID: 24824774 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bangsbo J, Mohr M. Fitness Testing in Football. Fitness Training in Soccer II. Copenhagen, Denmark: Bangsbosport; 2012.

  • 19.

    Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423–431. PubMed ID: 18806550 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Draganidis D, Chatzinikoloau A, Avloniti A, et al. Recovery kinetics of knee flexor and extensor strength after a football match. PLoS ONE. 2015;10(6):e0128072. PubMed ID: 26043222 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Madison G, Patterson SD, Read P, Howe L, Waldron M. Effects of small-sided game variation on changes in hamstring strength. J Strength Cond Res. 2019;33(3):839–845. PubMed ID: 30789860 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Haller N, Helmig S, Taenny P, Petry J, Schmidt S, Simon P. Circulating, cell-free DNA as a marker for exercise load in intermittent sports. PLoS ONE. 2018;13(1):e0191915. PubMed ID: 29370268 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mello R, Mello R, Gomes D, et al. Oxidative stress and antioxidant biomarker responses after a moderate-intensity soccer training session. Res Sports Med. 2017;25(3):322–332. PubMed ID: 28656783 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leeder JDC, van Someren KA, Gaze D, et al. Recovery and adaptation from repeated intermittent-sprint exercise. Int J Sports Physiol Perform. 2014;9:489–496. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Avloniti AA, Douda HT, Tokmakidis SP, Kortsaris AH, Papadopoulou EG, Spanoudakis EG. Acute effects of soccer training on white blood cell count in elite female players. Int J Sports Physiol Perform. 2007;2:239–249. PubMed ID: 19168924 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mascarin RB, De Andrade VL, Barbieri RA, Loures JP, Kalva-Filho CA, Papoti M. Dynamics of recovery of physiological parameters after a small-sided game in women soccer players. Front Physiol. 2018;9:887. PubMed ID: 30050459 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sjökvist J, Laurent MC, Richardson M, Curtner-Smith M, Holmberg HC, Bishop PA. Recovery from high-intensity training sessions in female soccer players. J Strength Cond Res. 2011;25(6):1726–1735. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81–82:209–230. PubMed ID: 17569697 doi:

  • 29.

    Godall S, Thomas K, Harper LD, et al. The assessment of neuromuscular fatigue during 120 min of simulated soccer exercise. Eur J Appl Physiol. 2017;117:687–697. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43:2161–2170. PubMed ID: 21502891 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Thorlund JB, Aagaard P, Madsen K. Rapid muscle force capacity changes after soccer match play. Int J Sports Med. 2009;30(4):273–278. PubMed ID: 19199196 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49:955–964. PubMed ID: 28060035 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Fiorenza M, Hostrup M, Gunnarsson TP, et al. Neuromuscular fatigue and metabolism during high-intensity intermittent exercise. Med Sci Sports Exerc. 2019;51(8):1642–1652. PubMed ID: 30817710 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–2995. PubMed ID: 21448723 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci. 2005;23(6):593–599. PubMed ID: 16195008 doi:

  • 36.

    Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res. 2010;316(18):3093–3099. PubMed ID: 20580710 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J Physiol. 2017;595(9):2897–2913. PubMed ID: 27673449 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi OJ. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28:975–982. PubMed ID: 20544484 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Fitts RH. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):2335–2338. PubMed ID: 27755382 doi:

  • 40.

    Westerblad H. Acidosis is not a significant cause of skeletal muscle fatigue. Med Sci Sports Exerc. 2016;48(11):2339–2342. PubMed ID: 27755383 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Evangelista R, Pereira R, Hackney AC, Machado M. Rest interval between resistance exercise sets: length affects volume but not creatine kinase activity or muscle soreness. Int J Sports Physiol Perform. 2011;6:118–127. PubMed ID: 21487155 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31(1):1–11. PubMed ID: 11219498 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 986 986 238
Full Text Views 23 23 7
PDF Downloads 19 19 6