Can Hyperoxic Preconditioning in Normobaric Hypoxia (3500 m) Improve All-Out Exercise Performance in Highly Skilled Skiers? A Randomized Crossover Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Background: The altering effects of hypoxia on aerobic/anaerobic performance are well documented and form the basis of this study. Application of hyperoxic gases (inspiratory fraction of oxygen [FiO2] > 0.2095) prior to competition or training (hyperoxic preconditioning) can compensate for the negative influence of acute hypoxia. Purpose: To investigate whether oxygen supplementation immediately prior to exercise (FiO2 = 1.0) improves all-out exercise performance in normobaric hypoxia (3500 m) in highly skilled skiers. Methods: In this single-blind, randomized, crossover study, 17 subjects performed a 60-second constant-load, all-out test in a normobaric hypoxic chamber. After a short period of adaptation to hypoxia (60 min), they received either pure oxygen or chamber air for 5 minutes prior to the all-out test (hyperoxic preconditioning vs nonhyperoxic preconditioning). Capillary blood was collected 3 times, and muscle oxygenation was assessed with near-infrared spectroscopy. Results: Absolute and relative peak power (P = .073 vs P = .103) as well as mean power (P = .330 vs P = .569) did not significantly differ after the hyperoxic preconditioning phase. PaO2 increased from 51.3 (3) to 451.9 (89.0) mm Hg, and SaO2 increased from 88.2% (1.7%) to 100% (0.2%) and dropped to 83.8% (4.2%) after the all-out test. Deoxygenation (P = .700) and reoxygenation rates (P = .185) did not significantly differ for both preconditioned settings. Conclusions: Therefore, the authors conclude that hyperoxic preconditioning did not enhance 60-second all-out exercise performance in acute hypoxia (3500 m).

Morawetz, Dünnwald, and Schobersberger are with the Inst for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT – University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Tirol, Austria; and Tirol Kliniken GmbH, Innsbruck, Austria. Faulhaber, Höllrigl, and Raschner are with the Dept of Sport Science, University of Innsbruck, Innsbruck, Austria. Gatterer is with the Inst of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy.

Morawetz (david.morawetz@umit.at) is corresponding author.
  • 1.

    Wehrlin JP, Hallen J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404–412. PubMed ID: 16311764 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Chapman RF, Stickford JL, Levine BD. Altitude training considerations for the winter sport athlete. Exp Physiol. 2010;95(3):411–421. PubMed ID: 19837773 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hoiland RL, Howe CA, Coombs GB, Ainslie PN. Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res. 2018;28(4):423–435.

  • 4.

    Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP. Ventilation, oxidative stress, and nitric oxide in hypobaric versus normobaric hypoxia. Med Sci Sports Exerc. 2013;45(2):253–260. PubMed ID: 22895381 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol. 2016;310(8):C629–C642. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep. 2012;35(3):419–423. PubMed ID: 22379248 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Khodaee M, Grothe HL, Seyfert JH, VanBaak K. Athletes at high altitude. Sports Health. 2016;8(2):126–132. PubMed ID: 26863894 doi:

  • 8.

    Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47(10):1931–1949. PubMed ID: 28451905 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Calbet JA, Losa-Reyna J, Torres-Peralta R, et al. Limitations to oxygen transport and utilization during sprint exercise in humans: evidence for a functional reserve in muscle O2 diffusing capacity. J Physiol. 2015;593(20):4649–4664. PubMed ID: 26258623 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Polat M. An examination of respiratory and metabolic demands of alpine skiing. J Exerc Sci Fitness. 2016;14(2):76–81. doi:

  • 11.

    Mallette MM, Stewart DG, Cheung SS. The effects of hyperoxia on sea-level exercise performance, training, and recovery: a meta-analysis. Sports Med. 2018;48(1):153–175. PubMed ID: 28975517 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sperlich B, Zinner C, Hauser A, Holmberg HC, Wegrzyk J. The impact of hyperoxia on human performance and recovery. Sports Med. 2017;47(3):429–438. PubMed ID: 27475952 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ulrich S, Hasler ED, Muller-Mottet S, et al. Mechanisms of improved exercise performance under hyperoxia. Respiration. 2017;93(2):90–98 .

  • 14.

    Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol. 2018;315(1):R1–R27.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Linossier MT, Dormois D, Arsac L, et al. Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand. 2000;168(3):403–411. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ohya T, Yamanaka R, Ohnuma H, Hagiwara M, Suzuki Y. Hyperoxia extends time to exhaustion during high-intensity intermittent exercise: a randomized, crossover study in male cyclists. Sports Med Open. 2016;2(1):34. PubMed ID: 27747789 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Peltonen JE, Rantamäki J, Niittymäki SPT, Sweins K, Vitasalo JT, Rusko HK. Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sports Exerc. 1995;27(4):573–579. PubMed ID: 7791589 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Plet J, Pedersen PK, Jensen FB, Hansen JK. Increased working capacity with hyperoxia in humans. Eur J Appl Physiol Occup Physiol. 1992;65(2):171–177. doi:

  • 19.

    Tucker R, Kayser B, Rae E, Rauch L, Bosch A, Noakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771–781. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hauser A, Zinner C, Born DP, Wehrlin JP, Sperlich B. Does hyperoxic recovery during cross-country skiing team sprints enhance performance? Med Sci Sports Exerc. 2014;46(4):787–794. PubMed ID: 24042304 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sperlich B, Schiffer T, Achtzehn S, Mester J, Holmberg HC. Pre-exposure to hyperoxic air does not enhance power output during subsequent sprint cycling. Eur J Appl Physiol. 2010;110(2):301–305. PubMed ID: 20473681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kay B, Stannard SR, Morton RH, North N. Hyperoxia during recovery improves peak power during repeated Wingate cycle performance. Braz J Biomotricity. 2008;2:92–100.

    • Search Google Scholar
    • Export Citation
  • 23.

    FIS RTP letter June 2016. http://www.fis-ski.com/inside-fis/medical-antidoping/anti-doping/; 2016. Accessed June 152018.

    • Export Citation
  • 24.

    IOC policy regarding certain NOC scientific and medical equipment Rio 2016. https://www.olympic.org/fight-against-doping; 2016. Accessed June 152018.

    • Export Citation
  • 25.

    WADA prohibited list 2018. https://www.wada-ama.org/en/prohibited-list; 2018. Accessed November 202018.

    • Export Citation
  • 26.

    Morawetz D, Duennwald T, Faulhaber M, Gatterer H, Schobersberger W. Impact of hyperoxic preconditioning in normobaric hypoxia (3500 m) on balance ability in highly skilled skiers: a randomized, crossover study [published online ahead of print February19, 2019]. Int J Sports Physiol Perform. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Green S. Measurement of anaerobic work. Sports Med. 1995;19(1):32–42. PubMed ID: 7740245 doi:

  • 28.

    Crum E, O’Connor W, Van Loo L, Valckx M, Stannard S. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):1037–1043. PubMed ID: 28557670 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gatterer H, Menz V, Salazar-Martinez E, et al. Exercise performance, muscle oxygen extraction and blood cell mitochondrial respiration after repeated-sprint and sprint interval training in hypoxia: a pilot study. J Sports Sci Med. 2018;17(3):339–347. PubMed ID: 30116106

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Montero D, Lundby C. No improved performance with repeated-sprint training in hypoxia versus normoxia: a double-blind and crossover study. Int J Sports Physiol Perform. 2017;12(2):161–167. PubMed ID: 27140941 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Klimek L, Bergmann KC, Biedermann T, et al. Visual analogue scales (VAS): measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: Position Paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC). Allergo J Int. 2017;26(1):16–24. PubMed ID: 28217433 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sperlich B, Zinner C, Krueger M, Wegrzyk J, Achtzehn S, Holmberg HC. Effects of hyperoxia during recovery from 5 × 30-s bouts of maximal-intensity exercise. J Sports Sci. 2012;30(9):851–858. PubMed ID: 22468755 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Davies MJ, Clark B, Welvaert M, et al. Effect of environmental and feedback interventions on pacing profiles in cycling: a meta-analysis. Front Physiol. 2016;7:591. PubMed ID: 27994554 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Beedie C, Benedetti F, Barbiani D, et al. Consensus statement on placebo effects in sports and exercise: the need for conceptual clarity, methodological rigour, and the elucidation of neurobiological mechanisms. Eur J Sport Sci. 2018;18(10):1383–1389. PubMed ID: 30114971 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 270 270 58
Full Text Views 481 481 5
PDF Downloads 35 35 6