Similar Cardioventilatory but Greater Neuromuscular Stimuli With Interval Drop Jump Than With Interval Running

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Context: Drop jumps and high-intensity interval running are relevant training methods to improve explosiveness and endurance performance, respectively. Combined training effects might, however, be achieved by performing interval drop jumping. Purpose: To determine the acute effects of interval drop jumping on oxygen uptake (V˙O2)—index of cardioventilatory/oxidative stimulation level and peripheral fatigue—a limiting factor of explosiveness. Methods: Thirteen participants performed three 11-minute interval training sessions during which they ran 15 seconds at 120% of the velocity that elicited maximal V˙O2 (V˙O2max) (ITrun), or drop jumped at 7 (ITDJ7) or 9 (ITDJ9) jumps per 15 seconds, interspersed with 15 seconds of passive recovery. V˙O2 and the time spent above 90% of V˙O2max (V˙TO2max) were collected. Peripheral fatigue was quantified via preexercise to postexercise changes in evoked potentiated quadriceps twitch (ΔQT). Power output was estimated during ITDJs using optical sensors. Results: All participants reached 90% of V˙O2max or higher during ITrun and ITDJ9, but only 11 did during ITDJ7. V˙TO2max was not different between ITrun and ITDJ9 (145 [76] vs 141 [151] s; P = .92) but was reduced during ITDJ7 (28 [26] s; P = .002). Mean ΔQT in ITDJ9 and ITDJ7 was not different (−17% [9%] vs −14% [8%]; P = .73) and greater than in ITrun (−8% [7%]; P = .001). No alteration in power output was found during ITDJs (37 [10] W·kg−1). Conclusion: Interval drop jumping at a high work rate stimulated the cardioventilatory and oxidative systems to the same extent as interval running, while the exercise-induced increase in fatigue did not compromise drop jump performance. Interval drop jumping might be a relevant strategy to get concomitant improvements in endurance and explosive performance.

Ducrocq, Hureau, and Blain are with LAMHESS, University Côte d’Azur, Nice, France. Meste is with CNRS, I3S, Université Côte d’Azur, Nice, France.

Ducrocq (g.ducrocq@live.fr) is corresponding author.
  • 1.

    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35:1025–1044. PubMed ID: 16336007 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ben Abdelkrim N, El Fazaa S, El Ati J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41:69–75. PubMed ID: 17138630 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Alkjaer T, Meyland J, Raffalt PC, Lundbye-Jensen J, Simonsen EB. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes. Physiol Rep. 2013;1:e00099. PubMed ID: 24303171 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chelly MS, Ghenem MA, Abid K, Hermassi S, Tabka Z, Shephard RJ. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. J Strength Cond Res. 2010;24:2670–2676. PubMed ID: 20844458 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sáez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26:575–584. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med. 2007;41:349–355. PubMed ID: 17347316 doi:

  • 7.

    de Villarreal ES, Gonzalez-Badillo JJ, Izquierdo M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J Strength Cond Res. 2008;22:715–725. PubMed ID: 18438249 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Turner AM, Owings M, Schwane JA. Improvement in running economy after 6 weeks of plyometric training. J Strength Cond Res. 2003;17:60–67. PubMed ID: 12580657

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brown GA, Ray MW, Abbey BM, Shaw BS, Shaw I. Oxygen consumption, heart rate, and blood lactate responses to an acute bout of plyometric depth jumps in college-aged men and women. J Strength Cond Res. 2010;24:2475–2482. PubMed ID: 20168259 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44. doi:

  • 11.

    Asmussen E, Fenn WO, Rahn H. Muscular exercise. In: Handbook of Physiology. Washington, DC: American Physiological Society; 1965:939–978.

    • Search Google Scholar
    • Export Citation
  • 12.

    Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med. 1986;3:346–356. PubMed ID: 3529283 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116:161–169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ramírez-Campillo R, Andrade DC, Izquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27:2714–2722. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Goss-Sampson M, Alkureishi R, Price M. Optimum contact time and the amortization phase in the bounce drop jump. J Sports Sci. 2002;20:3–74. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Horita T, Komi PV, Nicol C, Kyröläinen H. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance. Eur J Appl Physiol. 2002;88:76–84. PubMed ID: 12436273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588:1011–1022. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jacobs RA, Flück D, Bonne TC, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013;115:785–793. PubMed ID: 23788574 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Helgerud J, Høydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–671. PubMed ID: 17414804 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:2915–2930. doi:

  • 21.

    Billat VL. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31:13–31. PubMed ID: 11219499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wadden KP, Button DC, Kibele A, Behm DG. Neuromuscular fatigue recovery following rapid and slow stretch-shortening cycle movements. Appl Physiol Nutr Metab. 2012;37:437–447. PubMed ID: 22468795 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Strojnik V, Komi PV. Fatigue after submaximal intensive stretch-shortening cycle exercise. Med Sci Sports Exerc. 2000;32:1314–1319. doi:

  • 24.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287–332. PubMed ID: 18195089 doi:

  • 25.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81:1725–1789. PubMed ID: 11581501 doi:

  • 26.

    Rossiter HB, Kowalchuk JM, Whipp BJ. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol. 2006;100:764–770. PubMed ID: 16282428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dupont G, Blondel N, Lensel G, Berthoin S. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–115. PubMed ID: 12179954 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Byrne PJ, Moran K, Rankin P, Kinsella S. A comparison of methods used to identify “optimal” drop height for early phase adaptations in depth jump training. J Strength Cond Res. 2010;24:2050–2055. PubMed ID: 20634738 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol. 1983;50:273–282. PubMed ID: 6681758 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics Publishers; 1998.

  • 31.

    Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62:2003–2012. PubMed ID: 3110126 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Merton PA. Voluntary strength and fatigue. J Physiol. 1954;123:553–564. doi:

  • 33.

    Martin V, Millet GY, Martin A, Deley G, Lattier G. Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol. 2004;97:1923–1929. PubMed ID: 15258127 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Blain GM, Mangum TS, Sidhu SK, et al. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol. 2016;594:5303–5315. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15. PubMed ID: 10907753 doi:

  • 36.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–290. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tabachnick BG, Fidell LS. Using Multivariate Statistics. 5th ed. Boston, MA: Allyn & Bacon/Pearson Education; 2007.

  • 38.

    Ben Abderrahman A, Zouhal H, Chamari K, et al. Effects of recovery mode (active vs. passive) on performance during a short high-intensity interval training program: a longitudinal study. Eur J Appl Physiol. 2013;113:1373–1383. PubMed ID: 23229881 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Gormley SE, Swain DP, High R, et al. Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc. 2008;40:1336–1343. PubMed ID: 18580415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol. 1993;460:549–572. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol. 2001;531:871–878. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Edwards RHT, Hill DK, Jones DA, Merton PA. Fatigue of long duration in human skeletal muscle after exercise. J Physiol. 1977;272:769–778. doi:

  • 43.

    Bruton JD, Place N, Yamada T, et al. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol. 2008;586:175–184. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Skurvydas A, Brazaitis M, Venckūnas T, Kamandulis S. Predictive value of strength loss as an indicator of muscle damage across multiple drop jumps. Appl Physiol Nutr Metab. 2011;36:353–360. PubMed ID: 21574783 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Power GA, Dalton BH, Rice CL, Vandervoort AA. Delayed recovery of velocity-dependent power loss following eccentric actions of the ankle dorsiflexors. J Appl Physiol. 2010;109:669–676. PubMed ID: 20576845 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Bigland-Ritchie BR, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984;7:691–699. PubMed ID: 6100456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28:560–580. PubMed ID: 14328454 doi:

  • 48.

    Jacobs R, Bobbert MF, van Ingen Schenau GJ. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J Biomech. 1996;29:513–523. PubMed ID: 8964781 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Brøchner Nielsen NP, Hug F, Guével A, Colloud F, Lardy J, Dorel S. Changes in motor coordination induced by local fatigue during a sprint cycling task. Med Sci Sports Exerc. 2018;50:1394–1404. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 113 113 113
Full Text Views 6 6 6
PDF Downloads 7 7 7