Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Maximal oxygen uptake (V˙O2max) is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. Methods: Fourteen cyclists (V˙O2max 69.2 [6.6] mL·kg−1·min−1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. Results: Cyclists spent more time at >90%V˙O2max during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation (V˙E) was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with ΔV˙E (r = .36, P = .002). Conclusions: In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of V˙O2max when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.

Bossi, Passfield, and Hopker are with the School of Sport and Exercise Sciences, University of Kent, Chatham, United Kingdom. Mesquida is with the Faculty of Biology, University of Barcelona, Barcelona, Spain. Passfield is also with the Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. Bossi, Mesquida, and Rønnestad are with the Dept of Sport Science, Inland Norway University of Applied Science, Lillehammer, Norway.

Hopker (J.G.Hopker@kent.ac.uk) is corresponding author.
  • 1.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):1331. PubMed ID: 11219499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Midgley AW, Mc Naughton LR. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46(1):114. PubMed ID: 16596093

    • Search Google Scholar
    • Export Citation
  • 4.

    Bacon AP, Carter RE, Ogle EA, Joyner MJ. VO2max trainability and high intensity interval training in humans: a meta-analysis. PLos One. 2013;8(9):e73182. PubMed ID: 24066036 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:

  • 6.

    Lisbôa FD, Salvador AF, Raimundo JA, Pereira KL, de Aguiar RA, Caputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29(9):24342440. PubMed ID: 26308828 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rønnestad BR, Hansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):9991006. PubMed ID: 23942167 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Zadow EK, Gordon N, Abbiss CR, Peiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36(3):215219. PubMed ID: 25415386 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Billat V, Petot H, Karp JR, Sarre G, Morton RH, Mille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113(2):385394. PubMed ID: 22752344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18(5):615626. PubMed ID: 18067518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. PubMed ID: 20689463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):20462062. PubMed ID: 21552162 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol. 2002;541(pt 3):9911002. PubMed ID: 12068057 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wilson DF. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis. J Appl Physiol. 2017;122(3):611619. PubMed ID: 27789771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wilson DF. Regulation of metabolism: the rest-to-work transition in skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309(9):E793E801. PubMed ID: 26394666 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72(5):18181825. PubMed ID: 1601791 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dominelli PB, Render JN, Molgat-Seon Y, Foster GE, Romer LM, Sheel AW. Oxygen cost of exercise hyperpnoea is greater in women compared with men. J Physiol. 2015;593(8):19651979. PubMed ID: 25652549 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Casaburi R, Barstow TJ, Robinson T, Wasserman K. Influence of work rate on ventilatory and gas exchange kinetics. J Appl Physiol. 1989;67(2):547555. PubMed ID: 2793656 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nicolò A, Massaroni C, Passfield L. Respiratory frequency during exercise: the neglected physiological measure. Front Physiol. 2017;8:922. PubMed ID: 29321742 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA. Effects of respiratory muscle work on exercise performance. J Appl Physiol. 2000;89(1):131138. PubMed ID: 10904044 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zadow EK, Kitic CM, Wu SS, Smith ST, Fell JW. Validity of power settings of the Wahoo KICKR power trainer. Int J Sports Physiol Perform. 2016;11(8):11151117. PubMed ID: 26915606 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zadow EK, Kitic CM, Wu SSX, Fell JW. Reliability of power settings of the Wahoo KICKR power trainer after 60 hours of use. Int J Sports Physiol Perform. 2018;13(1):119121. PubMed ID: 28459298 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642.

  • 25.

    Edwards LM, Jobson SA, George SR, Day SH, Nevill AM. Whole-body efficiency is negatively correlated with minimum torque per duty cycle in trained cyclists. J Sports Sci. 2009;27(4):319325. PubMed ID: 19156562 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Daniels J, Scardina N, Hayes J, Foley P. Elite and subelite female middle-and long-distance runners. In: Landers DM, ed. Sport and Elite Performers. Vol 3. Champaign, IL: Human Kinetics; 1984:5772.

    • Search Google Scholar
    • Export Citation
  • 27.

    Rønnestad BR, Rømer T, Hansen J. Increasing oxygen uptake in well-trained cross-country skiers during work intervals with a fast start. Int J Sports Physiol Perform. 2020;15(3):383389. PubMed ID: 31621643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Manzi V, Iellamo F, Impellizzeri F, D’Ottavio S, Castagna C. Relation between individualized training impulses and performance in distance runners. Med Sci Sports Exerc. 2009;41(11):20902096. PubMed ID: 19812506 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rønnestad BR, Hansen J, Vegge G, Tonnessen E, Slettalokken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143151. PubMed ID: 24382021 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Seiler S, Joranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):7483. PubMed ID: 21812820 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Midgley AW, McNaughton LR, Carroll S. Reproducibility of time at or near VO2max during intermittent treadmill running. Int J Sports Med. 2007;28(1):4047. PubMed ID: 16586340 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Aaron EA, Johnson BD, Seow CK, Dempsey JA. Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol. 1992;72(5):18101817. PubMed ID: 1601790 doi:

  • 33.

    Tipton MJ, Harper A, Paton JFR, Costello JT. The human ventilatory response to stress: rate or depth? J Physiol. 2017;595(17):57295752. PubMed ID: 28650070 doi:

  • 34.

    Heinonen I, Nesterov SV, Kemppainen J, Fujimoto T, Knuuti J, Kalliokoski KK. Increasing exercise intensity reduces heterogeneity of glucose uptake in human skeletal muscles. PLos One. 2012;7(12):e52191. PubMed ID: 23284929 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hodson-Tole EF, Wakeling JM. Motor unit recruitment for dynamic tasks: current understanding and future directions. J Comp Physiol B. 2009;179(1):5766. PubMed ID: 18597095 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2765 2765 521
Full Text Views 53 53 12
PDF Downloads 56 56 11