Identifying Athlete Body Fluid Changes During a Competitive Season With Bioelectrical Impedance Vector Analysis

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze the association between body fluid changes evaluated by bioelectrical impedance vector analysis and dilution techniques over a competitive season in athletes. Methods: A total of 58 athletes of both sexes (men: age 18.7 [4.0] y and women: age 19.2 [6.0] y) engaging in different sports were evaluated at the beginning (pre) and 6 months after (post) the competitive season. Deuterium dilution and bromide dilution were used as the criterion methods to assess total body water (TBW) and extracellular water (ECW), respectively; intracellular water (ICW) was calculated as TBW–ECW. Bioelectrical resistance and reactance were obtained with a phase-sensitive 50-kHz bioelectrical impedance analysis device; bioelectrical impedance vector analysis was applied. Dual-energy X-ray absorptiometry was used to assess fat mass and fat-free mass. The athletes were empirically classified considering TBW change (pre–post, increase or decrease) according to sex. Results: Significant mean vector displacements in the postgroups were observed in both sexes. Specifically, reductions in vector length (Z/H) were associated with increases in TBW and ICW (r = −.718, P < .01; r = −.630, P < .01, respectively) and decreases in ECW:ICW ratio (r = .344, P < .05), even after adjusting for age, height, and sex. Phase-angle variations were positively associated with TBW and ICW (r = .458, P < .01; r = .564, P < .01, respectively) and negatively associated with ECW:ICW (r = −.436, P < .01). Phase angle significantly increased in all the postgroups except in women in whom TBW decreased. Conclusions: The results suggest that bioelectrical impedance vector analysis is a suitable method to obtain a qualitative indication of body fluid changes during a competitive season in athletes.

Campa and Toselli are with the Dept of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy. Matias, Sardinha, and Silva are with Exercise and Health Laboratory, CIPER, Faculty of Human Motricity, University of Lisbon, Lisbon, Portugal. Marini is with the Dept of Life and Environmental Sciences, Neuroscience and Anthropology Section, University of Cagliari, Cagliari, Italy. Heymsfield is with Pennington Biomedical Research Center, Baton Rouge, LA.

Matias (cmatias@fmh.ulisboa.pt) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Maughan RJShirreffs SM. Dehydration and rehydration in competative sport. Scand J Med Sci Sports. 2010;20(suppl 3):4047. doi:

  • 2.

    Cutrufello PTDixon CBZavorsky GS. Hydration assessment among marathoners using urine specific gravity and bioelectrical impedance analysis. Res Sports Med. 2016;24(3):234242. PubMed ID: 27373703 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Campa FGatterer HLukaski HToselli S. Stabilizing bioimpedance-vector-analysis measures with a 10-minute cold shower after running exercise to enable assessment of body hydration. Int J Sports Physiol Perform. 2019;113. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong LE. Assessing hydration status: the elusive gold standard. J Am Coll Nutr. 2007;26(5 suppl):575S584S. PubMed ID: 17921468 doi:

  • 5.

    Piccoli ARossi BPillon LBucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46(2):534539. PubMed ID: 7967368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lukaski HCPiccoli A. Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In: Preedy V ed. Handbook of Anthropometry. London, UK: Springer; 2012:287305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Buffa RMereu EComandini OIbanez MEMarini E. Bioelectrical impedance vector analysis (BIVA) for the assessment of two-compartment body composition. Eur J Clin Nutr. 2014;68(11):12341240. PubMed ID: 25139557 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013;67(suppl 1):S2S9. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Castizo-Olier JIrurtia AJemni MCarrasco-Marginet MFernandez-Garcia RRodriguez FA. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: systematic review and future perspectives. PLoS ONE. 2018;13(6):e0197957. PubMed ID: 29879146 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Marini ESergi GSucca Vet al. Efficacy of specific bioelectrical impedance vector analysis (BIVA) for assessing body composition in the elderly. J Nutr Health Aging. 2013;17(6):515521. PubMed ID: 23732547 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Heavens KRCharkoudian NO’Brien CKenefick RWCheuvront SN. Noninvasive assessment of extracellular and intracellular dehydration in healthy humans using the resistance-reactance-score graph method. Am J Clin Nutr. 2016;103(3):724729. PubMed ID: 26843158 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chertow GMLowrie EGWilmore DWet al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol. 1995;6(1):7581. PubMed ID: 7579073

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gonzalez MCBarbosa-Silva TGBielemann RMGallagher DHeymsfield SB. Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr. 2016;103(3):712716. PubMed ID: 26843156 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Marini ECampa FBuffa Ret al. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes [published online ahead of print February 22 2019]. Clin Nutr. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sardinha LB. Physiology of exercise and phase angle: another look at BIA. Eur J Clin Nutr. 2018;72(9):13231327. PubMed ID: 30185857 doi:

  • 16.

    Koury JCTrugo N MFTorres AG. Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. Int J Sports Physiol Perform. 2014;9(5):798804. PubMed ID: 24414089 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Carrasco-Marginet MCastizo-Olier JRodríguez-Zamora Let al. Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers. Barbosa TM ed. PLoS ONE. 2017;12(6):e0178819. PubMed ID: 28591135 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Campa FToselli S. Bioimpedance vector analysis of elite, sub-elite and low-level male volleyball players. Int J Sports Physiol Perform. 2018;13(9):12501253. PubMed ID: 29584510 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gatterer HSchenk KLaninschegg LSchlemmer PLukaski HBurtscher M. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling. PLoS ONE. 2014;9(10):e109729. PubMed ID: 25279660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Koury JCRibeiro MAMassarani FAVieira FMarini E. Fat-free mass in adolescent athletes: accuracy of bioimpedance equations and identification of new predictive equations. Nutrition. 2019;60:5965. PubMed ID: 30529187 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schoeller DAvan Santen EPeterson DWDietz WJaspan JKlein PD. Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr. 1980;33(12):26862693. PubMed ID: 6776801 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Shoeller D. Hydrometry. In: Steven HTimothy LZi-Mian WScott G Human Body Composition. Champaign, IL: Human Kinetics Books; 2005:3549.

    • Search Google Scholar
    • Export Citation
  • 23.

    Armstrong LEPumerantz ACFiala KAet al. Human hydration indices: acute and longitudinal reference values. Int J Sport Nutr Exerc Metab. 2010;20(2):145153. PubMed ID: 20479488 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Prosser SJScrimgeour CM. High-precision determination of 2H/1H in H2 and H2O by continuous-flow isotope ratio mass spectrometry. Anal Chem. 1995;67(13):19921997. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Matias CNSilva AMSantos DAGobbo LASchoeller DASardinha LB. Validity of extracellular water assessment with saliva samples using plasma as the reference biological fluid. Biomed Chromatogr. 2012;26(11):13481352. PubMed ID: 22275182 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Matias CNSantos DAGonçalves EMFields DASardinha LBSilva AM. Is bioelectrical impedance spectroscopy accurate in estimating total body water and its compartments in elite athletes? Ann Hum Biol. 2013;40(2):152156. PubMed ID: 23249164 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lukaski HCVega Diaz NTalluri ANescolarde L. Classification of hydration in clinical conditions: indirect and direct approaches using bioimpedance. Nutrients. 2019;11(4):E809. PubMed ID: 30974817 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Norman KStobaus NPirlich MBosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854861. PubMed ID: 22698802 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pollastri LLanfranconi FTredici GBurtscher MGatterer H. Body water status and short-term maximal power output during a multistage road bicycle race (Giro d’Italia 2014). Int J Sports Med. 2016;37(4):329333. PubMed ID: 26701829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mascherini GGatterer HLukaski HBurtscher MGalanti G. Changes in hydration, body-cell mass and endurance performance of professional soccer players through a competitive season. J Sports Med Phys Fitness. 2015;55(7–8):749755 .

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Campa FSilva AMToselli S. Changes in phase angle and handgrip strength induced by suspension training in older women. Int J Sports Med. 2018;39(6):442449. PubMed ID: 29684926 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Micheli MLPagani LMarella Met al. Bioimpedance and impedance vector patterns as predictors of league level in male soccer players. Int J Sports Physiol Perform. 2014;9(3):532539. PubMed ID: 23881291 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 255 255 98
Full Text Views 8 8 3
PDF Downloads 11 11 2
Altmetric Badge
PubMed
Google Scholar
Cited By