Ischemic Preconditioning: Improved Cycling Performance Despite Nocebo Expectation

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Ischemic preconditioning (IPC) through purposeful circulatory occlusion may enhance exercise performance. The value of IPC for improving performance is controversial owing to challenges with employing effective placebo controls. This study examines the efficacy of IPC versus a deceptive sham protocol for improving performance to determine whether benefits of IPC are attributable to true physiological effects. It was hypothesized that IPC would favorably alter performance more than a sham treatment and that physiological responses to exercise would be affected only after IPC treatment. Methods: In a randomized order, 16 participants performed incremental exercise to exhaustion on a cycle ergometer in control conditions and after sham and IPC treatments. Participants rated their belief as to the efficacy of each treatment compared with control. Results: Time to exhaustion was greatest after IPC (control = 1331 [270] s, IPC = 1429 [300] s, sham = 1343 [255] s, P = .02), despite negative performance expectations after IPC and positive expectation after sham. Maximal aerobic power remained unchanged after both SHAM and IPC (control = 42.0 [5.2], IPC = 41.7 [5.5], sham = 41.6 [5.5] mL·kg−1·min−1, P = .7), as did submaximal lactate concentration (control = 8.9 [2.6], sham = 8.0 [1.9], IPC = 7.7 [2.1] mmol, P = .1) and oxygen uptake (control = 37.8 [4.8], sham = 37.5 [5.3], IPC = 37.5 [5.5] mL·kg−1·min−1, P = .6). Conclusions: IPC before cycling exercise provides an ergogenic benefit that is not attributable to a placebo effect from positive expectation and that was not explained by traditionally suggested mechanisms.

The authors are with the Human Performance and Health Research Laboratory, Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.

Burr (burrj@uoguelph.ca) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Murry CEJennings RBReimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):11241136. PubMed ID: 3769170 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Loukogeorgakis SPPanagiotidou ATBroadhead MWDonald ADeanfield JEMacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450456. PubMed ID: 16053957 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Das MDas DK. Molecular mechanism of preconditioning. IUBMB Life. 2008;60(4):199203. PubMed ID: 18344203 doi:

  • 4.

    Thijssen DHJMaxwell JGreen DJCable NTJones H. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp Physiol. 2016;101(6):677692. PubMed ID: 26970535 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Reimer KAMurry CEYamasawa IHill MLJennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986;251(6 Pt. 2):H1306H1315. PubMed ID: 3789183 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cabrera JAZiemba EAColbert Ret al. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning. AJP Hear Circ Physiol. 2012;302(10):H1974H1982. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lintz JADalio MBJoviliano EEPiccinato CE. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir Bras. 2013;28(6):441446. PubMed ID: 23743682 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cruz RS de Ode Aguiar RATurnes TPereira KLCaputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961967. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey TGJones HGregson WAtkinson GCable NTThijssen DHJ. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):20842089. PubMed ID: 22843115 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pang CYYang RZZhong AXu NBoyd BForrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782788. PubMed ID: 7656281 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kido KSuga TTanaka Det al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):e12395. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Enko KNakamura KYunoki Ket al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507513. PubMed ID: 21901641 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Incognito AVBurr JFMillar PJ. The effects of ischemic preconditioning on human exercise performance. Sport Med. 2016;46(4):531544. doi:

  • 14.

    Barbosa TCMachado ACBraz IDet al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sport. 2015;25(3):356364. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    De Groot PCEThijssen DHJSanchez MEllenkamp RHopman MTE. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141146. PubMed ID: 19760432 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jean-St-Michel EManlhiot CLi Jet al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):12801286. PubMed ID: 21131871 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Marocolo MDa Mota GRPelegrini VAppell Coriolano HJ. Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int J Sports Med. 2015;36(10):822825. PubMed ID: 26058479 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sabino-Carvalho JLLopes TRObeid-Freitas Tet al. Effect of ischemic preconditioning on endurance performance does not surpass placebo. Med Sci Sports Exerc. 2017;49(1):124132. PubMed ID: 27580156 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Beedie CJColeman DAFoad AJ. Positive and negative placebo effects resulting from the deceptive administration of an ergogenic aid. Int J Sport Nutr Exerc Metab. 2007;17(3):259269. PubMed ID: 17693687 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loftin MSothern MWarren BUdall J. Comparison of VO2 peak during treadmill and cycle ergometry in severely overweight youth. J Sport Sci Med. 2004;3(4):554560. http://www.jssm.org/vol3/n4/8/v3n4-8pdf.pdf

    • Search Google Scholar
    • Export Citation
  • 21.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):21912194. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 23.

    Beedie CJFoad AJ. The placebo effect in sports performance: a brief review. Sport Med. 2009;39(4):313329. doi:

  • 24.

    Marocolo MBillaut Fda Mota GR. Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front Physiol. 2018;9:1874. PubMed ID: 30622484 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Clevidence MWMowery REKushnick MR. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol. 2012;112(10):36493654. PubMed ID: 22350355 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Crisafulli ATangianu FTocco Fet al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011;111(2):530536. PubMed ID: 21617078 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Orban JCLevraut JGindre Set al. Effects of acetylcysteine and ischaemic preconditioning on muscular function and postoperative pain after orthopaedic surgery using a pneumatic tourniquet. Eur J Anaesthesiol. 2006;23(12):10251030. PubMed ID: 16780616 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dickson EWBlehar DJCarraway REHeard SOSteinberg GPrzyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol. 2001;33(9):17511756. PubMed ID: 11549353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Edwards RBTofari PJCormack SJWhyte DG. Non-motorized treadmill running is associated with higher cardiometabolic demands compared with overground and motorized treadmill running. Front Physiol. 2017;8:914. PubMed ID: 29184508 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Aubry RLPower GABurr JF. An assessment of running power as a training metric for elite and recreational runners. J Strength Cond Res. 2018;32(8):22582264. PubMed ID: 29912073

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 301 301 100
Full Text Views 7 7 3
PDF Downloads 8 8 1
Altmetric Badge
PubMed
Google Scholar