Improved Physical Performance and Decreased Muscular and Oxidative Damage With Postlunch Napping After Partial Sleep Deprivation in Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the effects of napping after partial sleep deprivation (PSD) on reaction time, mood, and biochemical response to repeated-sprint exercise in athletes. Methods: Nine male judokas performed 4 test sessions in a counterbalanced and randomized order. Participants accomplished 1 control session after a normal sleep night (NSN) and 3 after PSD with (1) no nap, (2) ∼20-min nap (N20), and (3) ∼90-min nap (N90) opportunities. Test sessions included the running-based anaerobic sprint test, reaction time, Hooper index, and Epworth Sleepiness Scale. Muscle-damage biomarkers and antioxidant status were evaluated before and after exercise. Results: PSD decreased maximum (P < .001, d = 1.12), mean (P < .001, d = 1.33), and minimum (P < .001, d = 1.15) powers compared with NSN. However, N20 and N90 enhanced maximum power compared with PSD (P < .05, d = 0.54; P < .001, d = 1.06, respectively). Minimum power and mean power increased only after N90 (P < .001, d = 1.63; P < .001, d = 1.16, respectively). Epworth Sleepiness Scale increased after PSD (P < .001, d = 0.86) and decreased after N20 (P < .001, d = 1.36) and N90 (P < .001, d = 2.07). N20 reduced multiple-choice reaction time (P < .001, d = 0.61). Despite performance decrement, PSD increased postexercise aspartate aminotransferase (P < .001, d = 4.16) and decreased glutathione peroxidase (P < .001, d = 4.02) compared with NSN. However, the highest performances after N90 were accompanied with lesser aspartate aminotransferase (P < .001, d = 1.74) and higher glutathione peroxidase (P < .001, d = 0.86) compared with PSD. Conclusions: Napping could be preventive against performance degradation caused by sleep loss. A short nap opportunity could be more beneficial when the subsequent effort is brief and requires frequent decision making. However, a longer nap opportunity could be preventive against muscle and oxidative damage, even for higher performances.

Chamari and Hammouda participated equally in the study. Romdhani and Souissi are with the High Inst of Sport and Physical Education of Ksar-Said, Manouba University, Manouba, Tunisia, and the Research Center on Physical Activity, Sport and Health, National Observatory of Sports, Tunis, Tunisia. Romdhani and Hammouda are with the Research Unit, Molecular Bases of Human Pathology, Faculty of Medicine of Sfax, Sfax, Tunisia. Chaabouni and Mahdouani are with the Dept of Biochemistry, CHU Ibn Jazzar, Kairouan, Tunisia, and the Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia. Driss and Hammouda are with the Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity and Health, UPL, Paris Nanterre University, UFR STAPS, Nanterre, France. Chamari is with the Athlete Health and Performance Research Center, Aspetar, Qatar Orthopedic and Sports Medicine Hospital, Doha, Qatar.

Romdhani (romdhaniroma@gmail.com) is corresponding author.
  • 1.

    Waterhouse J, Atkinson G, Edwards B, Reilly T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci. 2007;25(14):15571566. PubMed ID: 17852691 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Romdhani M, Hammouda O, Chaabouni Y, et al. Sleep deprivation affects post-lunch dip performances, biomarkers of muscle damage and antioxidant status. Biol Sport. 2019;36(1):5565. PubMed ID: 30899140 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mejri MA, Hammouda O, Zouaoui K, et al. Effect of two types of partial sleep deprivation on Taekwondo players’ performance during intermittent exercise. Biol Rhythm Res. 2014;45(1):1726. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Jarraya M, Jarraya S, Chtourou H, Souissi N, Chamari K. The effect of partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biol Rhythm Res. 2013;44(3):503510. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rae DE, Chin T, Dikgomo K, et al. One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol. 2017;117(4):699712. PubMed ID: 28247026 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mejri MA, Yousfi N, Hammouda O, et al. One night of partial sleep deprivation increased biomarkers of muscle and cardiac injuries during acute intermittent exercise. J Sports Med Phys Fitness. 2017;57(5):643651. PubMed ID: 26868641 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hayashi M, Watanabe M, Hori T. The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity. Clin Neurophysiol. 1999;110(2):272279. PubMed ID: 10210616 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Petit E, Bourdin H, Tio G, Yenil O, Haffen E, Mougin F. Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes. Int J Sports Med. 2018;39(7):508516. PubMed ID: 29758571 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Blanchfield AW, Lewis-Jones TM, Wignall JR, Roberts JB, Oliver SJ. The influence of an afternoon nap on the endurance performance of trained runners. Eur J Sport Sci. 2018;18(9):11771184. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Keramidas ME, Siebenmann C, Norrbrand L, Gadefors M, Eiken O. A brief pre-exercise nap may alleviate physical performance impairments induced by short-term sustained operations with partial sleep deprivation—a field-based study. Chronobiol Int. 2018;35(10):14641470. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tokizawa K, Sawada SI, Tai T, et al. Effects of partial sleep restriction and subsequent daytime napping on prolonged exertional heat strain. Occup Environ Med. 2015;72(7):521528. PubMed ID: 25907211 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Daaloul H, Souissi N, Davenne D. Effects of napping on alertness, cognitive, and physical outcomes of karate athletes. Med Sci Sports Exerc. 2019;51(2):338345. PubMed ID: 30239491 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Petit E, Mougin F, Bourdin H, Tio GG, Haffen E. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. Eur J Appl Physiol. 2014;114(2):305315. PubMed ID: 24276580 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Suppiah HT, Yong LC, Choong G, Chia M. Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes. Int J Sports Physiol Perform. 2019;14(1):7682. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Boukhris O, Abdessalem R, Ammar A, et al. Nap opportunity during the daytime affects performance and perceived exertion in 5-m shuttle run test. Front Physiol. 2019;10:779. PubMed ID: 31281263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97110. PubMed ID: 1027738

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193213. PubMed ID: 2748771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tassi P, Bonnefond A, Engasser O, Hoeft A, Eschenlauer R, Muzet A. EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiol Behav. 2006;87:177184. PubMed ID: 16303153 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McNair DM, Lorr M, Droppleman LF. Manual for the Profile of Mood States (POMS). San Diego, CA: Educational and Industrial Testing Service; 1971.

    • Search Google Scholar
    • Export Citation
  • 20.

    Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540545. PubMed ID: 1798888 doi:

  • 21.

    Hooper SL, Mackinnon LT. Monitoring overtraining in athletes. Sports Med. 1995;20(5):321327. doi:

  • 22.

    Draper PN, Whyte G. Anaerobic performance testing. Peak Perform. 1997;96:35.

  • 23.

    Zagatto AM, Beck WR, Gobatto CA. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res. 2009;23(6):18201827. PubMed ID: 19675478 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:

  • 25.

    Haddad M, Chaouachi A, Castagnac C, et al. Validity and psychometric evaluation of the French version of RPE scale in young fit males when monitoring training loads. Sci Sports. 2013;28(2):e29e35. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757767. PubMed ID: 20518645 doi:

  • 27.

    Bijsterbosch MK, Duursma AM, Smit MJ, Bos OJ, Bouma JM, Gruber M. Several dehydrogenases and kinases compete for endocytosis from plasma by rat tissues. Biochem J. 1985;229(2):409417. PubMed ID: 2994634 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006;36(4):327358. doi:

  • 29.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:

  • 30.

    Chamari K, Padulo J. ‘Aerobic’ and ‘Anaerobic’ terms used in exercise physiology: a critical terminology reflection. Sports Med Open. 2015;1(1):9. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161186. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cai ZJ. A new function of rapid eye movement sleep: improvement of muscular efficiency. Physiol Behav. 2015;144:110115. PubMed ID: 25770701 doi:

  • 33.

    Devine JK, Wolf JM. Determinants of cortisol awakening responses to naps and nighttime sleep. Psychoneuroendocrinology. 2016;63:128134. PubMed ID: 26441231 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vale R, Rosa G, Júnior R, Dantas E. Cortisol and physical exercise. In: Esposito A, Bianchi V, eds. Cortisol: Physiology, Regulation and Health Implications. New York, NY: Nova Science; 2012:129138.

    • Search Google Scholar
    • Export Citation
  • 35.

    Faraut B, Nakib S, Drogou C, et al. Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction. J Clin Endocrinol Metab. 2015;100(3):E416E426. PubMed ID: 25668196 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):10321039. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Vgontzas AN, Pejovic S, Zoumakis E, et al. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. AJP Endocrinol Metab. 2006;292(1):E253E261. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ikeda M, Ikeda-sagara M, Okada T. Brain oxidation is an initial process in sleep induction. Neuroscience. 2005;130(4):10291040. PubMed ID: 15652998 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Romdhani M, Hammouda O, Smari K, et al. Total sleep deprivation and recovery sleep affect the diurnal variation of agility performance: the gender differences [published online ahead of print May 30, 2018]. J Strength Cond Res. PubMed ID: 29864109 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Monk TH. The post-lunch dip in performance. Clin Sports Med. 2005;24(2):e15e23. doi:

  • 41.

    Vitale JA, Weydahl A. Chronotype, physical activity, and sport performance: a systematic review. Sports Med. 2017;47(9):18591868. doi:

  • 42.

    Vitale JA, Roveda E, Montaruli A, et al. Chronotype influences activity circadian rhythm and sleep: differences in sleep quality between weekdays and weekend. Chronobiol Int. 2015;32(3):405415. PubMed ID: 25469597 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Vitale JA, Banfi G, Galbiati A, Ferini-Strambi L, La Torre A. Effect of a night game on Actigraphy-based sleep quality and perceived recovery in top-level volleyball athletes. Int J Sports Physiol Perform. 2019;14(2):265269. PubMed ID: 30040006 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1079 1079 226
Full Text Views 39 39 9
PDF Downloads 30 30 7