Force–Velocity–Power Profile in High-Elite Boulder, Lead, and Speed Climber Competitors

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare the force-production capacities among boulderers, lead climbers, and speed climbers during a pull-up test using a force–velocity–power profile. Methods: In total, 24 high-elite climbers (11 boulderers, 8 lead climbers, and 5 speed climbers) did 2 pull-ups at different percentages of their body mass (0%, 30%, 45%, 60%, and 70%). Force–velocity–power profile analyses were performed with the use of an accelerometer for each load. The intraclass correlation and coefficients of variation were calculated. A 1-way analysis of variance was performed with a Tukey post hoc test to assess the difference between the groups. Results: Regarding force, the coefficient of variation ranged from 1.00% to 6.18% and the intraclass correlation ranged from .98 to .99. For velocity, the coefficient of variation ranged from 2.75% to 6.62% and the intraclass correlation ranged from .84 to .95. The linear regression slope showed R2 to be between .93 and .99, confirming the high quality of the linear relationship between velocity and the external force produced during a pull-up. Boulderers presented significantly higher (P < .05) maximal power (+22.30% and +26.29%), mean power for the pull-up at body weight (+23.49% and +25.35%), and theoretical maximal velocity at zero force (+23.92% and +21.53%) than lead and speed climbers and a more significant curve increase (+35.21% compared with lead climbers). Conclusions: The reliability of the method was shown to be high. Moreover, boulderers were able to develop an important external force and had the capacity to maintain high speed when force production increased.

Levernier and Laffaye are with Complexity, Innovations, Motor and Sport Activities, University of Paris-Sud, Orsay, France; the University of Paris-Saclay, Orsay, France; and Complexity, Innovations, Motor and Sport Activities, University of Orleans, Orleans, France. Samozino is with the Interuniversity Laboratory of Biology and Motricity, EA 7424, Savoie Mont Blanc University, Chambéry, France. Laffaye is also with the Research Center for Sports Science, South Ural State University, Chelyabinsk, Russian Federation.

Levernier (guillaume.levernier@u-psud.fr) is corresponding author.
  • 1.

    Cormie P, Mccaulley GO, Triplett NT, Mcbride JM. Optimal loading for maximal power output during lower-body resistance exercises. Phys Fit Perform. 2007;39(2):340349.

    • Search Google Scholar
    • Export Citation
  • 2.

    Laffaye G, Levernier G, Collin JM. Determinant factors in climbing ability: influence of strength, anthropometry, and neuromuscular fatigue. Scand J Med Sci Sports. 2015;26(10):11511159. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Frost DM, Bronson S, Cronin JB, Newton RU. Changes in maximal strength, velocity, and power after 8 weeks of training with pneumatic or free weight resistance. J Strength Cond Res. 2016;30(4):934944. PubMed ID: 26418368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313322. PubMed ID: 21775909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin J. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12:10691077. PubMed ID: 28051333 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Samozino P, Horvais N, Hintzy F. Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc. 2007;39(4):680687. PubMed ID: 17414806 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):29402945. PubMed ID: 18789803 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med. 2015;36:143149. PubMed ID: 25259590

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jiménez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force–velocity–power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):3643. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rahmani A, Samozino P, Morin JB, Morel B. A simple method for assessing upper-limb force–velocity profile in bench press. Int J Sports Physiol Perform. 2018;13(2):200207. PubMed ID: 28605252 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Muñoz-López M, Marchante D, Cano-Ruiz MA, Chicharro JL, Balsalobre-Fernández C. Load, force and power-velocity relationships in the prone pull-up exercise. Int J Sports Physiol Perform. 2017;12(9):12491255. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ozimek M, Rokowski R, Draga P, et al. The role of physique, strength and endurance in the achievements of elite climbers. PLoS One. 2017;12(8):e0182026. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ozimek M, Staszkiewicz R, Rokowski R, Stanula A. Analysis of tests evaluating sport climbers’ strength and isometric endurance. J Hum Kinet. 2016;53:249260. PubMed ID: 28149428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Laffaye G, Collin JM, Levernier G, Padulo J. Upper-limb power test in rock-climbing. Int J Sports Med. 2014;35(8):670675. PubMed ID: 24554556 doi:

  • 15.

    White DJ, Olsen PD. A time motion analysis of bouldering style competitive rock climbing. J Strength Cond Res. 2010;24(5):13561360. doi:

  • 16.

    Billat V, Palleja P, Charlaix T, Rizzardo P, Janel N. Energy specificity of rock climbing and aerobic capacity in competitive sport rock climbers. J Sports Med Phys Fitness. 1995;35(1):2024. PubMed ID: 7474988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bertuzzi R, Fanchini E, Tricoli V, et al. Fit-climbing test: a field test for indoor rock climbing. J Strength Cond Res. 2012;26(6):15581563. PubMed ID: 21904243 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Macleod D, Sutherland DL, Buntin L, et al. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci. 2007;25(12):14331443. PubMed ID: 17786696 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ryepko OA. Features and functionality of speed and power capabilities of elite climbers and various types of rock climbing. Phys Educ Students. 2013;6:6065.

    • Search Google Scholar
    • Export Citation
  • 20.

    Fanchini M, Violette F, Impellizzeri FM, Maffiuletti NA. Differences in climbing-specific strength between boulder and lead rock climbers. J Strength Cond Res. 2013;27(2):310314. PubMed ID: 22505133 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Draper N, Giles D, Schöffl V, et al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sports Technol. 2015;8(3–4):8894. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Levernier G, Laffaye G. Four weeks of finger grip training increases the rate of force development and the maximal force in elite and top world-ranking climbers. J Strength Cond Res. 2019;33(9):24712480. PubMed ID: 28945641 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    López-Rivera E, González-Badillo JJ. The effects of two maximum grip strength training methods using the same effort duration and different edge depth on grip endurance in elite climbers. Sports Technol. 2012;5(3–4):3741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ryepko OA. Morphological characteristics of elite athletes, specializing in speed climbing, climbing and alpinism. Med Biol Eng Comput. 2013;17(12):6771. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB. Effect of countermovement on power–force–velocity profile. Eur J Appl Physiol. 2014;114(11):22812288. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Atkinson G, Nevill A. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 1998;26(4):217238. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NY: Lawrence Earlbaum Associates; 1988:2026.

  • 28.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed ID: 24227123

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    García-Ramos A, Torrejón A, Morales-Artacho AJ, Pérez-Castilla A, Jaric S. Optimal resistive forces for maximizing the reliability of leg muscles capacities tested on a cycle ergometer. J Appl Biomech. 2018;34(1):4752. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 158 158 158
Full Text Views 5 5 5
PDF Downloads 6 6 6