Current Evidence and Practical Applications of Flywheel Eccentric Overload Exercises as Postactivation Potentiation Protocols: A Brief Review

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To summarize the evidence on postactivation potentiation (PAP) protocols using flywheel eccentric overload (EOL) exercises. Methods: Studies were searched using the electronic databases PubMed, Scopus, and Institute for Scientific Information Web of Knowledge. Results: In total, 7 eligible studies were identified based on the following results: First, practitioners can use different inertia intensities (eg, 0.03–0.88 kg·m2), based on the exercise selected, to enhance sport-specific performance. Second, the PAP time window following EOL exercise seems to be consistent with traditional PAP literature, where acute fatigue is dominant in the early part of the recovery period (eg, 30 s), and PAP is dominant in the second part (eg, 3 and 6 min). Third, as EOL exercises require large force and power outputs, a volume of 3 sets with the conditioning activity (eg, half-squat or lunge) seems to be a sensible approach. This could reduce the transitory muscle fatigue and thereby allow for a stronger potentiation effect compared with larger exercise volumes. Fourth, athletes should gain experience by performing EOL exercises before using the tool as part of a PAP protocol (3 or 4 sessions of familiarization). Finally, the dimensions of common flywheel devices offer useful and practical solutions to induce PAP effects outside of normal training environments and prior to competitions. Conclusions: EOL exercise can be used to stimulate PAP responses to obtain performance advantages in various sports. However, future research is needed to determine which EOL exercise modalities among intensity, volume, and rest intervals optimally induce the PAP phenomenon and facilitate transfer effects on athletic performances.

Beato and McErlain-Naylor are with the School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom. Halperin is with the School of Public Health, Sackler Faculty of Medicine,  and the Sylvan Adams Sports Inst, Tel Aviv University, Tel Aviv, Israel. Dello Iacono is with the Inst of Clinical Exercise and Health Science, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom.

Beato (M.Beato@uos.ac.uk) is corresponding author.
  • 1.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147–166. PubMed ID: 19203135 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boullosa D, Del Rosso S, Behm DG, Foster C. Post-activation potentiation (PAP) in endurance sports: a review. Eur J Sport Sci. 2018;18(5):595–610. PubMed ID: 29490594 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231–240. PubMed ID: 26508319 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    MacIntosh BR, Grange RW, Cory CR, Houston ME. Myosin light chain phosphorylation during staircase in fatigued skeletal muscle. Pflugers Arch. 1993;425(1–2):9–15. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    MacIntosh BR. Cellular and whole muscle studies of activity dependent potentiation. Adv Exp Med Biol. 2010;682:315–342. PubMed ID: 20824534 doi:

  • 6.

    Beato M, Stiff A, Coratella G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength [published online ahead of print January 4, 2019]. J Strength Cond Res. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Baudry S, Duchateau J. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol. 2007;102(4):1394–1401. PubMed ID: 17204572 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993;264(5, pt 1):C1085–C1095. PubMed ID: 8388631 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Hoyo M, de la Torre A, Pradas F, et al. Effects of eccentric overload bout on change of direction and performance in soccer players. Int J Sports Med. 2014;36(04):308–314. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Abbate F, Sargeant AJ, Verdijk PWL, de Haan A. Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol. 2000;88(1):35–40. PubMed ID: 10642359 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Vandenboom R, Grange RW, Houston ME. Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol Physiol. 1993;265(6):C1456–C1462. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bauer P, Sansone P, Mitter B, Makivic B, Seitz LB, Tschan H. Acute effects of back squats on countermovement jump performance across multiple sets of a contrast training protocol in resistance-trained men. J Strength Cond Res. 2019;33(4):995–1000. PubMed ID: 29309389 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wallace BJ, Shapiro R, Wallace KL, Abel MG, Symons TB. Muscular and neural contributions to postactivation potentiation. J Strength Cond Res. 2019;33(3):615–625. PubMed ID: 30589723 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64(1):355–405. http://www.scholarpedia.org/article/Short-term_synaptic_plasticity

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–1449. PubMed ID: 26838985 doi:

  • 16.

    Skurvydas A, Jurgelaitiene G, Kamandulis S, et al. What are the best isometric exercises of muscle potentiation? Eur J Appl Physiol. 2019;119(4):1029–1039. PubMed ID: 30734104 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Guellich A, Güllich A, Sehmidtbleicher D. Potentiation of explosive force. IAAF. 1996;4(October):67–80.

  • 18.

    Rixon KP, Lamont HS, Bemben MG. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J Strength Cond Res. 2007;21(2):500–505. PubMed ID: 17530946 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Behm DG, Button DC, Barbour G, Butt JC, Young WB. Conflicting effects of fatigue and potentiation on voluntary force. J Strength Cond Res. 2004;18(2):365–372. PubMed ID: 15141999 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wilson JM, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854–859. PubMed ID: 22580978 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Maloney SJ, Turner AN, Fletcher IM. Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 2014;44(10):1347–1359. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dello Iacono A, Beato M, Halperin I. The effects of cluster-set and traditional-set post activation potentiation protocols on vertical jump performance [published online ahead of print October 15, 2019]. Int J Sports Physiol Perform. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol. 2000;88(6):2131–2137. PubMed ID: 10846027 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dobbs WC, Tolusso D V, Fedewa M V, Esco MR. Effect of postactivation potentiation on explosive vertical jump: a systematic review and meta-analysis. J Strength Cond Res. 2019;33(7):2009–2018. PubMed ID: 30138241 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Docherty D, Hodgson MJ. The application of postactivation potentiation to elite sport. Int J Sports Physiol Perform. 2007;2(4):439–444. PubMed ID: 19171961 doi:

  • 26.

    Dello Iacono A, Martone D, Padulo J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res. 2016;30(11):3122–3133. PubMed ID: 26958786 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Dello Iacono A, Seitz LB. Hip thrust-based PAP effects on sprint performance of soccer players: heavy-loaded versus optimum-power development protocols. J Sports Sci. 2018;36(20):2375–2382. PubMed ID: 29595081 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Dello Iacono A, Padulo J, Seitz LD. Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. J Sports Sci. 2018;36(11):1269–1276. PubMed ID: 28873044 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hansen TE, Lindhard J. On the maximum work of human muscles especially the flexors of the elbow. J Physiol. 1923;57(5):287–300. PubMed ID: 16993572 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Berg HE, Tesch A. A gravity-independent ergometer to be used for resistance training in space. Aviat Space Environ Med. 1994;65(8):752–756. PubMed ID: 7980338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dudley GA, Tesch PA, Miller BJ, Buchanan P. Importance of eccentric actions in performance adaptations to resistance training. Aviat Space Environ Med. 1991;62(6):543–550. PubMed ID: 1859341

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Vicens-Bordas J, Esteve E, Fort-Vanmeerhaeghe A, Bandholm T, Thorborg K. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2018;21(1):2–3. PubMed ID: 28965851 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Colliander EB, Tesch PA. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand. 1990;140(1):31–39. PubMed ID: 2275403 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Beato M, De Keijzer KL, Leskauskas Z, Allen WJ, Dello Iacono A, McErlain-Naylor SA. Effect of postactivation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance [published online ahead of print June 19, 2019]. J Strength Cond Res. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Núñez FJ, Suarez-Arrones LJ, Cater P, Mendez-Villanueva A. The high-pull exercise: a comparison between a VersaPulley flywheel device and the free weight. Int J Sports Physiol Perform. 2017;12(4):527–532. PubMed ID: 27705034 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Piqueras-Sanchiz F, Martín-Rodríguez S, Martínez-Aranda LM, et al. Effects of moderate vs. high iso-inertial loads on power, velocity, work and hamstring contractile function after flywheel resistance exercise. PLoS One. 2019;14(2):e0211700. PubMed ID: 30730959 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Gonzalo-Skok O, Tous-Fajardo J, Valero-Campo C, et al. Eccentric-overload training in team-sport functional performance: constant bilateral vertical versus variable unilateral multidirectional movements. Int J Sports Physiol Perform. 2017;12(7):951–958. PubMed ID: 27967273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tous-Fajardo J, Maldonado RA, Quintana JM, Pozzo M, Tesch PA. The flywheel leg-curl machine: offering eccentric overload for hamstring development. Int J Sports Physiol Perform. 2006;1(3):293–298. PubMed ID: 19116442 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016;11(1):66–73. PubMed ID: 25942419 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Norrbrand L, Fluckey JD, Pozzo M, Tesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol. 2008;102(3):271–281. PubMed ID: 17926060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Vicens-Bordas J, Esteve E, Fort-Vanmeerhaeghe A, Bandholm T, Thorborg K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J Sci Med Sport. 2017;21(1):75–83. PubMed ID: 29107539 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Sabido R, Hernández-Davó JL, Pereyra-Gerber GT. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int J Sports Physiol Perform. 2018;13(4):482–489. PubMed ID: 28872379 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Vázquez-Guerrero J, Moras G, Baeza J, Rodríguez-Jiménez S. Force outputs during squats performed using a rotational inertia device under stable versus unstable conditions with different loads. PLoS One. 2016;11(4):e0154346. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Douglas J, Pearson S, Ross A, McGuigan M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J Strength Cond Res. 2018;32(10):2750–2761. PubMed ID: 30113915 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Nardone A, Romanò C, Schieppati M. Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol. 1989;409:451–471. PubMed ID: 2585297 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Coratella G, Bellin G, Beato M, Schena F. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps. J Sports Sci. 2015;33(12):1276–1282. PubMed ID: 25517892 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Higbie EJ, Cureton KJ, Warren GL, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(5):2173–2181. PubMed ID: 8941543 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Fahs CA, Rossow LM, Zourdos MC. Analysis of factors related to back squat concentric velocity. J Strength Cond Res. 2018;32(9):2435–2441. PubMed ID: 30137028 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Fang Y, Siemionow V, Sahgal V, Xiong F, Yue GH. Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. J Neurophysiol. 2001;86(4):1764–1772. PubMed ID: 11600637 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol. 2010;110(5):997–1005. PubMed ID: 20676897 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(2):125–146. doi:

  • 52.

    Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943–951. PubMed ID: 28385560 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–895. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4(November):1–12. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. NewYork, NY: Routledge Academic; 1988.

  • 56.

    Cuenca-Fernández F, López-Contreras G, Arellano R. Effect on swimming start performance of two types of activation protocols: lunge and YoYo squat. J Strength Cond Res. 2015;29(3):647–655. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Cuenca-Fernández F, Ruiz-Teba A, López-Contreras G, Arellano R. Effects of 2 types of activation protocols based on postactivation potentiation on 50-m freestyle performance [published online ahead of print June 14, 2018]. J Strength Cond Res. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Cuenca-Fernández F, López-Contreras G, Mourão L, et al. Eccentric flywheel post-activation potentiation influences swimming start performance kinetics. J Sports Sci. 2019;37(4):443–451. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Timon R, Allemano S, Camacho-Cardeñosa M, Camacho-Cardeñosa A, Martinez-Guardado I, Olcina G. Post-activation potentiation on squat jump following two different protocols: traditional vs. inertial flywheel. J Hum Kinet. 2019;69(1):271–281. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer. Am J Sports Med. 2013;41(2):327–335. doi:

  • 61.

    Gouvêa AL, Fernandes IA, César EP, Silva WAB, Gomes PSC. The effects of rest intervals on jumping performance: a meta-analysis on post-activation potentiation studies. J Sports Sci. 2013;31(5):459–467. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 220 220 220
Full Text Views 9 9 9
PDF Downloads 7 7 7