The Effect of Upper-Body Positioning on the Aerodynamic–Physiological Economy of Time-Trial Cycling

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Cycling time trials (TTs) are characterized by riders’ adopting aerodynamic positions to lessen the impact of aerodynamic drag on velocity. The optimal performance requirements for TTs likely exist on a continuum of rider aerodynamics versus physiological optimization, yet there is little empirical evidence to inform riders and coaches. The aim of the present study was to investigate the relationship between aerodynamic optimization, energy expenditure, heat production, and performance. Methods: Eleven trained cyclists completed 5 submaximal exercise tests followed by a TT. Trials were completed at hip angles of 12° (more horizontal), 16°, 20°, 24° (more vertical), and their self-selected control position. Results: The largest decrease in power output at anaerobic threshold compared with control occurred at 12° (−16 [20] W, P = .03; effect size [ES] = 0.8). There was a linear relationship between upper-body position and heat production (R 2 = .414, P = .04) but no change in mean body temperature, suggesting that, as upper-body position and hip angle increase, convective and evaporative cooling also rise. The highest aerodynamic–physiological economy occurred at 12° (384 [53] W·C d A −1·L−1·min−1, ES = 0.4), and the lowest occurred at 24° (338 [28] W·C d A −1·L−1·min−1, ES = 0.7), versus control (367 [41] W·C d A −1·L−1·min−1). Conclusion: These data suggest that the physiological cost of reducing hip angle is outweighed by the aerodynamic benefit and that riders should favor aerodynamic optimization for shorter TT events. The impact on thermoregulation and performance in the field requires further investigation.

The authors are with the Dept of Engineering, SPEED Laboratory, Nottingham Trent University, Nottingham, United Kingdom.

Faulkner (steve.faulkner@ntu.ac.uk) is corresponding author.
  • 1.

    Martin JC, Gardner AS, Barras M, Martin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc. 2006;38(3):592597. PubMed ID: 16540850 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Froncioni A. Cycling science. In: Cheung SS, Zabala M, eds. Cycling Science: The Ultimate Nexus of Knowledge and Performance. 1st ed. Champaign, IL: Human Kinetics; 2017:92109.

    • Search Google Scholar
    • Export Citation
  • 3.

    di Prampero PE, Cortili G, Mognoni P, Saibene F. Equation of motion of a cyclist. J Appl Physiol. 2017;47(1):201206. doi:

  • 4.

    Fintelman DM, Sterling M, Hemida H, Li F-X. The effect of time trial cycling position on physiological and aerodynamic variables. J Sports Sci. 2015;33(16):17301737. PubMed ID: 25658151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fintelman DM, Sterling M, Hemida H, Li FX. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy. J Biomech. 2014;47(8):18941898. PubMed ID: 24726654 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ashe MC, Scroop GC, Frisken PI, Amery CA, Wilkins MA, Khan KM. Body position affects performance in untrained cyclists. Br J Sports Med. 2003;37(5):441444. PubMed ID: 14514538 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kordi M, Fullerton C, Passfield L, Parker Simpson L. Influence of upright versus time trial cycling position on determination of critical power and W′ in trained cyclists. Eur J Sport Sci. 2019;19(2):192198. PubMed ID: 30009673 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Verma R, Hansen EA, de Zee M, Madeleine P. Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling. J Electromyogr Kinesiol. 2016;27:7886. PubMed ID: 26938676 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Moura BM, Moro VL, Rossato M, de Lucas RD, Diefenthaeler F. Effects of saddle height on performance and muscular activity during the Wingate test. J Phys Educ. 2017;28(1):e2838. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fintelman DM, Sterling M, Hemida H, Li FX. Effect of different aerodynamic time trial cycling positions on muscle activation and crank torque. Scand J Med Sci Sport. 2016;26(5):528534. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Elmer SJ, Barratt PR, Korff T, Martin JC. Joint-specific power production during submaximal and maximal cycling. Med Sci Sports Exerc. 2011;43(10):19401947. PubMed ID: 21448081 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bini RR, Daly L, Kingsley M, Daly L, Kingsley M. Muscle force adaptation to changes in upper body position during seated sprint cycling. J Sports Sci. 2019;37(19):22702278. PubMed ID: 31177946 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dorel S, Couturier A, Hug F. Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scand J Med Sci Sports. 2009;19(1):4454. PubMed ID: 18266790 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nybo L. Cycling in the heat: performance perspectives and cerebral challenges. Scand J Med Sci Sport. 2010;20(suppl 3):7179. doi:

  • 15.

    Galloway SDR, Maughan RJ, Laursen PB, et al. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sport Exerc. 1997;29(9):12401249. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    De Pauw K, Roelands B, De Geus B, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8:111122. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kyle C. The effects of crosswinds upon time trials. Cycle Science. 1991;3:5156.

  • 18.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 19.

    ASHRAE. Thermal comfort. In: ASHRAE Handbook of Fundamentals. Atlanta, GA: ASHRAE; 1997:8.18.26.

  • 20.

    Griffiths ID, Boyce PR. Performance and thermal comfort. Ergonomics. 1971;14(4):457468. PubMed ID: 5139965 doi:

  • 21.

    Faulkner SH, Hupperets M, Hodder SG, Havenith G. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):183189. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cheuvront SN, Kenefick RW. CORP: improving the status quo for measuring whole body sweat losses. J Appl Physiol. 2017;123(3):632636. PubMed ID: 28684591 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    International Organization for Standardization. Ergonomics: Evaluation of Thermal Strain by Physiological Measurements. Geneva, Switzerland: International Organization for Standardization; 2004.

    • Search Google Scholar
    • Export Citation
  • 24.

    Havenith G. Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol. 2001;90(5):19431954. PubMed ID: 11299289 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Morris NB, Coombs G, Jay O. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Med Sci Sports Exerc. 2016;48(1):114122. PubMed ID: 26258857 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;XVII:863871. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Parsons K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance. 3rd ed. London, UK: Taylor and Francis; 2014. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:

  • 29.

    Wilson DG. Bicycling Science. 3rd ed. Cambridge, MA: The MIT Press; 2004.

  • 30.

    Gnehm P, Reichenbach S, Altpeter E, Widmer H, Hoppeler H. Influence of different racing positions on metabolic cost in elite cyclists. Med Sci Sports Exerc. 1997;29(6):818823. PubMed ID: 9219211 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Gagge AP, Herrington LP, Winslow CEA. Thermal interchanges between the human body and its atmospheric environment. Am J Epidemiol. 1937;26:84102. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nielsen B. Olympics in Atlanta: a fight against physics. Med Sci Sports Exerc. 1996;28(6):665668. PubMed ID: 8784753 doi:

  • 33.

    Ericson MO, Nisell R, Arborelius UP, Ekholm J. Muscular activity during ergometer cycling. Scand J Rehabil Med. 1985;17(2):5361. PubMed ID: 4023660

All Time Past Year Past 30 Days
Abstract Views 937 937 937
Full Text Views 32 32 32
PDF Downloads 26 26 26