Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the differences in muscle fatigability after resistance exercise performed with fast tempo (FT) compared with slow tempo (ST). Methods: A total of 8 resistance-trained males completed FT and ST hexagonal-barbell deadlifts, consisting of 8 sets of 6 repetitions at 60% 3-repetition maximum, using a randomized crossover design. Each FT repetition was performed with maximal velocity, while each repetition during ST was performed with a 3-1-3 (eccentric/isometric/concentric) tempo (measured in seconds). Isometric maximal voluntary contraction, voluntary muscle activation, and evoked potentiated twitch torque of the knee extensors were determined using twitch interpolation before, during (set 4), and after exercise. Displacement–time data were measured during the protocols. Results: The mean bar velocity and total concentric work were higher for FT compared with ST (995 [166] W vs 233 [52] W; 0.87 [0.05] m/s vs 0.19 [0.05] m/s; 4.8 [0.8] kJ vs 3.7 [1.1] kJ). Maximal voluntary contraction torque, potentiated twitch, and voluntary muscle activation were significantly reduced after FT (−7.8% [9.2%]; −5.2% [9.2%], −8.7% [12.2%]) and ST (−11.2% [8.4%], −13.3% [8.1%], −1.8% [3.6%]). Conclusion: The decline in maximal voluntary force after both the FT and ST hexagonal-barbell deadlifts exercise was accompanied by a similar decline in contractile force and voluntary muscle activation.

Collison and Moran are with the School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom. Zijdewind is with the Dept of Neuroscience, University Medical Center of the University of Groningen, Groningen, the Netherlands. Hettinga is with Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.

Moran (jmorana@essex.ac.uk) is corresponding author.
  • 1.

    Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145168. PubMed ID: 17241104 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2015;45(4):577585. PubMed ID: 25601394 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Westcott WL, Winett RA, Anderson ES, et al. Effects of regular and slow speed resistance training on muscle strength. J Sports Med Phys Fitness. 2001;41(2):154158. PubMed ID: 11447355

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Hakkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75(4):333342. PubMed ID: 9134365 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):22282238. PubMed ID: 27015386 doi:

  • 6.

    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute: chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50(4):231236. PubMed ID: 26511006 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Benson C, Docherty D, Brandenburg J. Acute neuromuscular responses to resistance training performed at different loads. J Sci Med Sport. 2006;9(1–2):135142. PubMed ID: 16580253 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Brandon R, Howatson G, Strachan F, Hunter AM. Neuromuscular response differences to power vs strength back squat exercise in elite athletes. Scand J Med Sci Sports. 2015;25(5):630639. PubMed ID: 24995719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hakkinen K. Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int J Sports Med. 1993;14(2):5359. PubMed ID: 8463025 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hakkinen K. Neuromuscular fatigue in males and females during strenuous heavy resistance loading. Electromyogr Clin Neurophysiol. 1994;34(4):205214. PubMed ID: 8082606

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Howatson G, Brandon R, Hunter AM. The response to, and recovery from maximum strength and power training in elite track and field athletes. Int J Sports Physiol Perform. 2016;11(3):356362. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tran QT, Docherty D, Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur J Appl Physiol. 2006;98(4):402410. PubMed ID: 16969639 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695704. PubMed ID: 19066934 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253267. PubMed ID: 15049717 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Place N, Casartelli N, Glatthorn JF, Maffiuletti NA. Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve. 2010;42(6):894900. PubMed ID: 20928903 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Froyd C, Beltrami FG, Millet GY, Noakes TD. Central regulation and neuromuscular fatigue during exercise of different durations. Med Sci Sports Exerc. 2016;48(6):10241032. PubMed ID: 26741123 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Brady CJ, Harrison AJ, Flanagan EP, Haff GG, Comyns TM. A comparison of the isometric midthigh pull and isometric squat: intraday reliability, usefulness, and the magnitude of difference between tests. Int J Sports Physiol Perform. 2018;13(7):844852. PubMed ID: 29182457 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Abingdon-on-Thames, United Kingdom: Routledge; 2013.

  • 19.

    Sullivan GM, Feinn R. Using effect size-or why the P value is not enough. J Grad Med Educ. 2012;4(3):279282. PubMed ID: 23997866 doi:

  • 20.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:

  • 21.

    Ross EZ, Gregson W, Williams K, Robertson C, George K. Muscle contractile function and neural control after repetitive endurance cycling. Med Sci Sports Exerc. 2010;42(1):206212. PubMed ID: 20010112 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stoter IK, MacIntosh BR, Fletcher JR, Pootz S, Zijdewind I, Hettinga FJ. Pacing strategy, muscle fatigue, and technique in 1500-m speed-skating and cycling time trials. Int J Sports Physiol Perform. 2016;11(3):337343. PubMed ID: 26263372 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161173. PubMed ID: 17962334 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Painter KB, Haff GG, Ramsey MW, et al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 2012;7(2):161169. PubMed ID: 22173008 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):5060. PubMed ID: 12436270 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339361. PubMed ID: 15831061 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129138. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179194. PubMed ID: 23338987 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):11501157. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tanimoto M, Sanada K, Yamamoto K, et al. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res. 2008;22(6):19261938. PubMed ID: 18978616 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nobrega SR, Ugrinowitsch C, Pintanel L, Barcelos C, Libardi CA. Effect of resistance training to muscle failure vs volitional interruption at high- and low-intensities on muscle mass and strength. J Strength Cond Res. 2018;32(1):162169. PubMed ID: 29189407 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187200. PubMed ID: 25249278 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359368. doi:

  • 34.

    Smith MJ, Melton P. Isokinetic versus isotonic variable-resistance training. Am J Sports Med. 1981;9(4):275279. PubMed ID: 7258474 doi:

  • 35.

    Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765785. PubMed ID: 29372481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Carroll KM, Bazyler CD, Bernards JR, et al. Skeletal muscle fiber adaptations following resistance training using repetition maximums or relative intensity. Sports. 2019;7(7):169. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Carroll KM, Bernards JR, Bazyler CD, et al. Divergent performance outcomes following resistance training using repetition maximums or relative intensity. Int J Sports Physiol Perform. 2018;14(1):4654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Painter KB, Haff GG, Triplett NT, et al. Resting hormone alterations and injuries: block vs DUP weight-training among D-1 track and field athletes. Sports. 2018;6(1):3. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Harris N, Cronin J, Keogh J. Contraction force specificity and its relationship to functional performance. J Sports Sci. 2007;25(2):201212. PubMed ID: 17127595 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Johnston MJ, Cook CJ, Drake D, Costley L, Johnston JP, Kilduff LP. The neuromuscular, biochemical, and endocrine responses to a single-session vs double-session training day in elite athletes. J Strength Cond Res. 2016;30(11):30983106. PubMed ID: 27028155 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Periard JD, Girard O, Racinais S. Neuromuscular adjustments of the knee extensors and plantar flexors following match-play tennis in the heat. Br J Sports Med. 2014;48(suppl 1):i45i51. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 214 137
Full Text Views 16 16 8
PDF Downloads 11 11 5