Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the energetic profiles of the Yo-Yo Intermittent Recovery Tests 1 and 2 (YYIR1 and YYIR2). Methods: Intermittent running distance (IR1D and IR2D), time to exhaustion (IR1T and IR2T), and total recovery time between shuttles (IR1R and IR2R) were measured in 10 well-trained male athletes (age 24.4 [2.0] y, height 182 [1] cm, weight 75.8 [7.9] kg). Respiratory gases and blood lactate (BLC) were obtained preexercise, during exercise, and until 15 min postexercise. Metabolic energy, average metabolic power , and energy share (percentage of aerobic [WAER], anaerobic lactic [WBLC], and anaerobic alactic energy system [WPCr]) were calculated using the PCr-La-O2 method. Results: Peak oxygen consumption was possibly higher in YYIR2 (60.3 [5.1] mL·kg−1·min−1) than in YYIR1 (P = .116, 57.7 [4.5] mL·kg−1·min−1, d = −0.58). IR1D, IR1T, and IR1R were very likely higher than IR2D, IR2T, and IR2R, respectively (P < .001, 1876 [391] vs 672 [132] m, d = −2.83; P < .001, 916 [175] vs 304 [57] s, d = −3.03; and P < .001, 460 [100] vs 150 [40] s, d = −2.83). Metabolic energy was most likely lower in YYIR2 than in YYIR1 (P < .001, 493.5 [118.1] vs 984.8 [171.7] kJ, d = 3.24). Average metabolic power was most likely higher in YYIR2 than in YYIR1 (P < .001, 21.5 [1.7] vs 14.5 [2.2] W·kg−1, d = 3.54). When considering aerobic phosphocreatine restoration during breaks between shuttles, WAER (P = .693, 49% [10%] vs 48% [5%], d = −0.16) was similar, WPCr (P = .165, 47% [11%] vs 42% [6%], d = −0.54) possibly higher, and WBLC (P < .001, 4% [1%] vs 10% [3%], d = 1.95) almost certainly lower in YYIR1 than in YYIR2. Conclusions: WAER and WPCr are predominant in YYIR1 and YYIR2 with almost identical WAER. Higher IR1D and IR1T in YYIR1 result in higher metabolic energy but lower average metabolic power and slightly lower peak oxygen consumption. Higher IR1R allows for higher reliance on WPCr in YYIR1, while YYIR2 requires a higher fraction of WBLC.

Kaufmann, Hoos, Kuehl, Tietz, and Reim are with the Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany. Fehske is with the Dept of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany. Latzel is with the Faculty of Applied Healthcare Sciences, Deggendorf Inst of Technology, Deggendorf, Germany. Beneke is with the Dept of Medicine, Training & Health, Inst of Sports Science, Philipps-Universität Marburg, Marburg, Germany.

Kaufmann (sebastian.kaufmann@uni-wuerzburg.de) is corresponding author.
  • 1.

    Bangsbo J, Mohr M, Poulsen A, Perez-Gomez J, Krustrup P. Training and testing the elite athlete. J Exerc Sci Fit. 2006;4(1):114.

  • 2.

    Rampinini E, Sassi A, Azzalin A, et al. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol. 2010;108(2):401409. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bangsbo J, Nørregaard L, Thorsoe F. Activity profile of competition soccer. Can J Sport Sci. 1991;16(2):110116. PubMed ID: 1647856

  • 4.

    Scanlan AT, Dascombe B, Reaburn P. A comparison of the activity demands of elite and sub-elite Australian men’s basketball competition. J Sports Sci. 2011;29(11):11531160. PubMed ID: 21777151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973991. PubMed ID: 14606925 doi:

  • 6.

    Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988;22(4):141144. PubMed ID: 3228681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Castagna C, Impellizzeri FM, Rampinini E, D’Ottavio S, Manzi V. The Yo–Yo intermittent recovery test in basketball players. J Sci Med Sport. 2008;11(2):202208. PubMed ID: 17574917 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Atkins SJ. Performance of the Yo-Yo intermittent recovery test by elite professional and semiprofessional rugby league players. J Strength Cond Res. 2006;20(1):222. PubMed ID: 16503685

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Buchheit M. The 30–15 intermittent fitness test: 10 year review. Myorobie J. 2010;1(9):278.

  • 11.

    Buchheit M, Rabbani A. The 30–15 intermittent fitness test versus the Yo-Yo intermittent recovery test level 1: relationship and sensitivity to training. Int J Sports Physiol Perform. 2014;9(3):522524. PubMed ID: 23475226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Krustrup P, Mohr M, Amstrup T, et al. The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697705. PubMed ID: 12673156 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sports Exerc. 2006;38(9):16661673. PubMed ID: 16960529 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fanchini M, Castagna C, Coutts AJ, Schena F, McCall A, Impellizzeri FM. Are the Yo-Yo intermittent recovery test levels 1 and 2 both useful? Reliability, responsiveness and interchangeability in young soccer players. J Sports Sci. 2014;32(20):19501957. PubMed ID: 25333679 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Artioli GG, Bertuzzi RC, Roschel H, Mendes SH, Lancha AH Jr, Franchini E. Determining the contribution of the energy systems during exercise. J Vis Exp. 2012;(61):e3413. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol. 2002;87(4–5):388392.

  • 17.

    Davis P, Leithauser RM, Beneke R. The energetics of semicontact 3 × 2-min amateur boxing. Int J Sports Physiol Perform. 2014;9(2):233239. PubMed ID: 24572964 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523.

  • 19.

    Julio UF, Panissa VLG, Esteves JV, Cury RL, Agostinho MF, Franchini E. Energy-system contributions to simulated judo matches. Int J Sports Physiol Perform. 2017;12(5):676683. PubMed ID: 27736247 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bertuzzi RC, Franchini E, Kokubun E, Kiss MA. Energy system contributions in indoor rock climbing. Eur J Appl Physiol. 2007;101(3):293300. doi:

  • 21.

    Bertuzzi RC, Nascimento EM, Urso RP, Damasceno M, Lima-Silva AE. Energy system contributions during incremental exercise test. J Sports Sci Med. 2013;12(3):454460. PubMed ID: 24149151

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bertuzzi RC, Franchini E, Ugrinowitsch C, et al. Predicting MAOD using only a supramaximal exhaustive test. Int J Sports Med. 2010;31(7):477481. PubMed ID: 20432195. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hultman E, Bergström J, Anderson NM. Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest. 1967;19(1):5666. PubMed ID: 6031321 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Latzel R, Hoos O, Stier S, et al. Energetic profile of the basketball exercise simulation test in junior elite players. Int J Sports Physiol Perform. 2018;13(6):810815. PubMed ID: 29182413 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed ID: 11547894 doi:

  • 26.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Batterham AM, Cox AJ. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sports Sci. 2006;10:4651.

    • Search Google Scholar
    • Export Citation
  • 28.

    McCartney N, Spriet LL, Heigenhauser G, Kowalchuk JM, Sutton JR, Jones NL. Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol. 1986;60(4):11641169. PubMed ID: 3700299 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Spriet LL, Soderlund K, Bergstrom M, Hultman E. Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol. 1987;62(2):611615. PubMed ID: 3558220 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Beneke R, Böning D. The limits of human performance. Essays Biochem. 2008;44:1126. PubMed ID: 18384280 doi:

  • 31.

    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjær M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):11651174. PubMed ID: 16775559 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Özyener F, Rossiter H, Ward S, Whipp B. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001;533(3):891902. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Karcher C, Buchheit M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014;44(6):797814. PubMed ID: 24682948 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stojanović E, Stojiljković N, Scanlan AT, Dalbo VJ, Berkelmans DM, Milanović Z. The activity demands and physiological responses encountered during basketball match-play: a systematic review. Sports Med. 2018;48(1):111135. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ghosh A, Goswami A, Mazumdar P, Mathur D. Heart rate & blood lactate response in field hockey players. Indian J Med Res. 1991;94:351356. PubMed ID: 1794891

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Noonan BC. Intragame blood-lactate values during ice hockey and their relationships to commonly used hockey testing protocols. J Strength Cond Res. 2010;24(9):22902295. PubMed ID: 20683352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 197
Full Text Views 18 18 18
PDF Downloads 16 16 16