Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Context: The indirect markers of muscle damage have been previously studied in females. However, inconclusive results have been found, possibly explained by the heterogeneity regarding monitoring and verification of menstrual-cycle phase. Purpose: To determine whether the fluctuations in sex hormones during the menstrual cycle influence muscle damage. Methods: A total of 19 well-trained eumenorrheic women (age 28.6 [5.9] y; height 163.4 [6.1] cm; weight 59.6 [5.8] kg body mass) performed an eccentric-based resistance protocol consisting of 10 × 10 back squats at 60% of their 1-repetition maximum on the early follicular phase (EFP), late follicular phase, and midluteal phase of the menstrual cycle. Range of motion, muscle soreness, countermovement jump, and limb circumferences were evaluated prior to 24 and 48 hours postexercise. Perceived exertion was evaluated after each set. Results: Differences in sex hormones indicated that tests were adequately performed in the different menstrual-cycle phases. Prior to exercise, muscle soreness was higher in the EFP (4.7 [7.7]) than in the late follicular phase (1.1 [3.2]; P = .045). No other variables showed significant differences between phases. Time-point differences (baseline, 24, and 48 h) were observed in knee range of motion (P = .02), muscle soreness, countermovement jump, and between sets for perceived exertion (P < .001). Conclusion: Although the protocol elicited muscle damage, hormonal fluctuations over the menstrual cycle did not seem to affect indirect markers of muscle damage, except for perceived muscle soreness. Muscle soreness was perceived to be more severe before exercise performed in EFP, when estrogen concentrations are relatively low. This may impair women’s predisposition to perform strenuous exercise during EFP.

The authors are with the LFE Research Group, Dept of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain.

Alfaro-Magallanes (vm.alfaro@upm.es) is corresponding author.
  • 1.

    Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122(3):559570. PubMed ID: 28035017 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gathercole RJ, Sporer BC, Stellingwerff T, Sleivert GG. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):25222531. PubMed ID: 26308829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Muanjai P, Mickevičius M, Sniečkus A, Satkunskiene D, Kamandulis S, Jones DA. Slow torque recovery after eccentric exercise and the repeated bout effect; the role of primary and secondary muscle damage. J Musculoskelet Neuronal Interact. 2019;19(2):207214. PubMed ID: 31186391

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cristina-Souza G, Santos-Mariano AC, Souza-Rodrigues CC, et al. Menstrual cycle alters training strain, monotony, and technical training length in young. J Sports Sci. 2019;37(16):18241830. PubMed ID: 30939987 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Janse de Jonge XAK. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833851. doi:

  • 6.

    Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle. Sports Med. 2010;40(1):4158. doi:

  • 7.

    Tiidus PM. Influence of estrogen on muscle plasticity. Braz J Biomotricity. 2011;5(3):143155. doi:

  • 8.

    Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET. Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J Appl Physiol. 2009;107(3):853858. PubMed ID: 19574506 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Janse de Jonge XAK, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):26102617. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437444.

  • 11.

    Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;8:649. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med. 2001;8(12):11531157. PubMed ID: 11733293 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131142. PubMed ID: 24343353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gallardo-Fuentes F, Gallardo-Fuentes J, Ramírez-Campillo R, et al. Intersession and intrasession reliability and validity of the my jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res. 2016;30(7):20492056. PubMed ID: 27328276 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Robertson RJ, Goss FL, Rutkowski J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333341. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14. www.sportsci.org/2017/wghxls.htm

    • Search Google Scholar
    • Export Citation
  • 18.

    Daley AJ. Exercise and primary dysmenorrhoea. Sports Med. 2008;38(8):659670. doi:

  • 19.

    Anderson LJ, Baker LL, Schroeder ET. Blunted myoglobin and quadriceps soreness after electrical stimulation during the luteal phase or oral contraception. Res Q Exerc Sport. 2017;88(2):193202. PubMed ID: 28388333 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Oosthuyse T, Bosch A. The effect of gender and menstrual phase on serum creatine kinase activity and muscle soreness following downhill Running. Antioxidants. 2017;6(1):16. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kendall B, Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002;32(2):103123. doi:

  • 22.

    Chaffin ME, Berg KE, Meendering JR, Llewellyn TL, French JA, Davis JE. Interleukin-6 and delayed onset muscle soreness do not vary during the menstrual cycle. Res Q Exerc Sport. 2011;82(4):693701. PubMed ID: 22276411 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sipavičienė S, Daniusevičiutė L, Klizienė I, Kamandulis S, Skurvydas A. Effects of estrogen fluctuation during the menstrual cycle on the response to stretch-shortening exercise in females. Biomed Res Int. 2013;2013:243572. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Julian R, Hecksteden A, Fullagar HH, Meyer T. The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One. 2017;12(3):e0173951. PubMed ID: 28288203 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Janse de Jonge XAK, Boot CRL, Thom JM, Ruell PA, Thompson MW. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol. 2001;530(1):161166. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Brown M, Howatson G, Keane K, Stevenson EJ. Exercise-induced muscle damage following dance and sprint specific exercise in females. J Sports Med Phys Fitness. 2016;56(11):13761383. PubMed ID: 26022746

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Keane KM, Salicki R, Goodall S, Thomas K, Howatson G. Muscle damage response in female collegiate athletes after repeated sprint activity. J Strength Cond Res. 2015;29(10):28022807. PubMed ID: 25853920 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Joyce S, Sabapathy S, Bulmer AC, Minahan C. The effect of prior eccentric exercise on heavy-intensity cycling: the role of gender and oral contraceptives. Eur J Appl Physiol. 2014;114(5):9951003. PubMed ID: 24504652 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Thompson HS, Hyatt JP, De Souza MJ, Clarkson PM. The effects of oral contraceptives on delayed onset muscle soreness following exercise. Contraception. 1997;56:5965. PubMed ID: 9315413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hooper AEC, Bryan AD, Eaton M. Menstrual cycle effects on perceived exertion and pain during exercise among sedentary women. J Womens Health. 2011;20(3):439446. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 390 390 390
Full Text Views 15 15 15
PDF Downloads 13 13 13