Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To evaluate and compare the effects of 2 sprint interval training (SIT) sets of different distances on biochemical markers indicative of metabolism, stress, and antioxidant capacity in competitive swimmers and, to investigate the potential influence of gender on these markers. Methods: Twenty-four adolescent, well-trained swimmers (12 men and 12 women) participated in the study. In a random and counterbalanced order, the swimmers completed 2 SIT sets (8 × 50 m and 8 × 25 m) in freestyle with maximal intensity on different days. Work-to-rest ratio was 1:1 in both sets. Blood samples were drawn preexercise, immediately postexercise, and 1 hour postexercise to evaluate the effects of the SIT sets on a number of biochemical parameters. Results: Swimming speed was higher at 8 × 25 m. The 2 SIT sets induced significant increases in lactate, glucose, insulin, glucagon, cortisol, and uric acid (P ≤ .001). No differences in these parameters were found between sets, except for irisin (higher in 8 × 50 m; P = .02). Male swimmers were faster and had higher lactate and uric acid concentrations, as well as lower reduced glutathione concentration, than female swimmers (P < .01). Conclusions: The 2 swimming SIT sets induced increases in most of the biochemical markers studied. The 2-fold difference between sets in distance did not differentiate the effects of sprint interval exercise on most biochemical parameters. Thus, low-volume SIT sets seem to be effective stimuli for competitive swimmers.

The authors are with the Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Kabasakalis (thanasiskabasakalis@yahoo.gr) is corresponding author.
  • 1.

    Gibala MJ, Jones AM. Physiological and performance adaptations to high-intensity interval training. In: van Loon LJC, Meeusen R, eds. Limits of Human Endurance. Nestle Nutr Inst Workshop Ser. Vol 76. Basel, Switzerland: Nestec Ltd, Vevey/S: Karger AG; 2013:5160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Engel FA, Ackermann A, Chtourou H, Sperlich B. High-intensity interval training performed by young athletes: a systematic review and meta-analysis. Front Physiol. 2018;9:1012. PubMed ID: 30100881 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595:29152930. PubMed ID: 27748956 doi:

  • 4.

    Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports. 2013;:e341e352. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Schoenmakers PPJM, Hettinga FJ, Reed KE. The moderating role of recovery durations in high-intensity interval-training protocols. Int J Sports Physiol Perform. 2019;14:859867. PubMed ID: 31146621 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Espersen GT, Elbaek A, Schmidt-Olsen S, Ejlersen E, Varming K, Grunnet N. Short-term changes in the immune system of elite swimmers under competition conditions. Different immunomodulation induced by various types of sport. Scand J Med Sci Sports. 1996;6:156163. PubMed ID: 8827844 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Casuso RA, Aragon-Vela J, Huertas JR, Ruiz-Ariza A, Martínez-Lopez EJ. Comparison of the inflammatory and stress response between sprint interval swimming and running. Scand J Med Sci Sports. 2018;28:13711378. PubMed ID: 29281146 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Maglischo EW. Swimming Fastest. Champaign, IL: Human Kinetics; 2003:451480.

  • 9.

    Nugent FJ, Comyns TM, Burrows E, Warrington GD. Effects of low-volume, high-intensity training on performance in competitive swimmers: a systematic review. J Strength Cond Res. 2017;31:837847. PubMed ID: 27465628 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pla R, Le Meur Y, Aubry A, Toussaint JF, Hellard P. Effects of a 6-week period of polarized or threshold training on performance and fatigue in elite swimmers. Int J Sports Physiol Perform. 2019;14:183189. PubMed ID: 30040002 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kabasakalis A, Nikolaidis S, Tsalis G, Christoulas K, Mougios V. Effects of sprint interval exercise dose and sex on circulating irisin and redox status markers in adolescent swimmers. J Sports Sci. 2019;37:827832. PubMed ID: 30306821 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Olbrecht J. The Science of Winning. Luton, UK: Swimshop; 2000:1558.

  • 13.

    Kabasakalis A, Mougios V. Biochemical monitoring of swimming training: old and new concepts. In: Fernandes RJ, ed. The Science of Swimming and Aquatic Activities. New York, NY: Nova Science Publishers; 2018:7994.

    • Search Google Scholar
    • Export Citation
  • 14.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50:281291. PubMed ID: 26423706 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: does less equal more? J Appl Physiol. 2015;119:172189. PubMed ID: 25977451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mougios V. Exercise Biochemistry. 2nd ed. Champaign, IL: Human Kintecs; 2019:403440.

  • 17.

    Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131143. PubMed ID: 26876650 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Davies KJ. Adaptive homeostasis. Mol Aspects Med. 2016;49:17. PubMed ID: 27112802 doi:

  • 19.

    Hoffman J. Physioligcal Aspects of Sports Training and Performance. 2nd ed. Champaign, IL: Human Kinetics; 2014:1954.

  • 20.

    Theofilidis G, Bogdanis GC, Koutedakis Y, Karatzaferi C. Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers. Sports. 2018;6:153. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Buckley J, Hawes M, Martin A, Eston RG. Human body composition. In: Norton K, Eston R, eds. Kinanthropometry and Exercise Physiology. 4th ed. Abingdon, UK: Routledge; 2019:138170.

    • Search Google Scholar
    • Export Citation
  • 22.

    Huh JY, Mougios V, Kabasakalis A, et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab. 2014;99:E2154E2161. PubMed ID: 25119310 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate intensity exercise. Am J Physiol Endocrinol Metab. 2014; 307:E539E552. PubMed ID: 25096178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kabasakalis A, Tsalis G, Zafrana E, Loupos D, Mougios V. Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers. J Sports Sci. 2014;32:747756. PubMed ID: 24404835 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:312. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wu AHB. Tietz Clinical Guide to Laboratory Tests. St. Louis, MO: Saunders; 2006.

  • 27.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927954. PubMed ID: 23832851 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nalbandian M, Takeda M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology. 2016;5:38. doi:

  • 29.

    Cerda-Kohler H, Henríquez-Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mice. Physiol Rep. 2018;6:e13800. PubMed ID: 30230254 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Takahashi K, Kitaoka Y, Matsunaga Y, Hatta H. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle. Physiol Rep. 2019;7:e14224. PubMed ID: 31512405 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Trefts E, Williams AS, Wasserman DH. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci. 2015;135:203225. PubMed ID: 26477916.

  • 32.

    Parker L, Trewin A, Levinger I, Shaw CS, Stepto NK. The effect of exercise-intensity on skeletal muscle stress kinase and insulin protein signaling. PLoS One. 2017;12:e0171613. PubMed ID: 28182793 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab Syndr Obes. 2013;6:113122. PubMed ID: 23467903 doi:

  • 34.

    Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschop MH. The new biology and pharmacology of glucagon. Physiol Rev. 2017;97:721766. doi:

  • 35.

    Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13:324337. PubMed ID: 28211512 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Fiorenza M, Gunnarsson TP, Hostrup M, et al. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol. 2018;596:28232840. PubMed ID: 29727016 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Viru A, Viru M. Cortisol--essential adaptation hormone in exercise. Int J Sports Med. 2004;25:461464. PubMed ID: 15346236 doi:

  • 38.

    Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise-the role of reactive oxygen species. Front Biosci. 2007;12:48264838. PubMed ID: 17569613 doi:

  • 39.

    Morales-Alamo D, Calbet JA. Free radicals and sprint exercise in humans. Free Radic Res. 2014;48:3042. PubMed ID: 23879691 doi:

  • 40.

    Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006;36:327358. PubMed ID: 16573358 doi:

  • 41.

    Gibala MJ, Hawley JA. Sprinting toward fitness. Cell Metabol. 2017;25:988990. doi:

  • 42.

    Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Haugen T, Seiler S, Sandbakk Ø, Tønnessen E. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sports Med Open. 2019;5:44. PubMed ID: 31754845 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276291. PubMed ID: 20861519 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12:S2-161S2-170. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 365 290
Full Text Views 8 8 8
PDF Downloads 5 5 5