Changes in the Load–Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Objective: To compare the short-term effect of power- and strength-oriented resistance-training programs on the individualized load–velocity profiles obtained during the squat (SQ) and bench-press (BP) exercises. Methods: Thirty physically active men (age = 23.4 [3.5] y; SQ 1-repetition maximum [1RM] = 126.5 [26.7] kg; BP 1RM = 81.6 [16.7] kg) were randomly assigned to a power- (exercises: countermovement jump and BP throw; sets per exercise: 4–6; repetitions per set: 5–6; load: 40% 1RM) or strength-training group (exercises: SQ and BP; sets per exercise: 4–6; repetitions per set: 2–8; load: 70%–90% 1RM). The training program lasted 4 wk (2 sessions/wk). The individualized load–velocity profiles (ie, velocity associated with the 30%–60%–90% 1RM) were assessed before and after training through an incremental loading test during the SQ and BP exercises. Results: The power-training group moderately increased the velocity associated with the full spectrum of % 1RM for the SQ (effect size [ES] range: 0.70 to 0.93) and with the 30% 1RM for the BP (ES: 0.67), while the strength-training group reported trivial/small changes across the load–velocity spectrum for both the SQ (ES range: 0.00 to 0.35) and BP (ES range: −0.06 to −0.33). The power-training group showed a higher increase in the mean velocity associated with all % 1RM compared with the strength-training group for both the SQ (ES range: 0.54 to 0.63) and BP (ES range: 0.25 to 0.53). Conclusions: The individualized load–velocity profile (ie, velocity associated with different % 1RM) of lower-body and upper-body exercises can be modified after a 4-wk resistance-training program.

The authors are with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. García-Ramos is also with the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile.

García-Ramos (amgarcia@ucsc.cl) is corresponding author.
  • 1.

    Pérez-Castilla A, Piepoli A, Garrido-Blanca G, Delgado-García G, Balsalobre-Fernández C, García-Ramos A. Precision of 7 commercially available devices for predicting the bench-press 1-repetition maximum from the individual load-velocity relationship. Int J Sports Physiol Perform2019;14(10):14421446. PubMed ID: 30958044 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Banyard HG, Nosaka K, Sato K, Haff G. Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perform. 2017;12:11701176. PubMed ID: 28182500 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mann J, Ivey P, Sayers S. Velocity-based training in football. Strength Cond J. 2015;37:5257. doi:

  • 4.

    Nevin J. Autoregulated resistance training: does velocity-based training represent the future? Strength Cond J. 2019;41:3439. doi:

  • 5.

    McBurnie AJ, Allen KP, Garry M, et al. The benefits and limitations of predicting one repetition maximum using the load-velocity relationship. Strength Cond J. 2019;41(6):2840. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    García-Ramos A, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Differences in the load-velocity profile between 4 bench-press variants. Int J Sports Physiol Perform. 2018;13:326331. PubMed ID: 28714752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:

  • 8.

    Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35:841851. PubMed ID: 16180944 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed ID: 21311352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2017;12:512519. PubMed ID: 27618386 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Weakley JJ, Wilson KM, Till K, et al. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J Strength Cond Res. 2019;33:24202425. PubMed ID: 28704314 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Perez-Castilla A, Garcia-Ramos A, Padial P, Morales-Artacho AJ, Feriche B. Load–velocity relationship in variations of the half-squat exercise: influence of execution technique. J Strength Cond Res. 2020;34(4):10241031. PubMed ID: 28885389 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sánchez-Moreno M, Rodríguez-Rosell D, Pareja-Blanco F, Mora-Custodio R, González-Badillo JJ. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int J Sports Physiol Perform. 2017;12:13781384. PubMed ID: 28338365 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fernandes JFT, Lamb KL, Twist C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J Strength Cond Res. 2018;32:14401447. PubMed ID: 28486338 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Loturco I, Pereira LA, Winckler C, Santos WL, Kobal R, McGuigan M. Load-velocity relationship in national paralympic powerlifters: a case study. Int J Sports Physiol Perform. 2019;14:531535. PubMed ID: 30204509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res. 2017;31:11271131. PubMed ID: 28328719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Balsalobre-Fernández C, García-Ramos A, Jiménez-Reyes P. Load–velocity profiling in the military press exercise: effects of gender and training. Int J Sports Sci Coach. 2018;13:743750. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41:125146. PubMed ID: 21244105 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kawamori N, Newton RU. Velocity specificity of resistance training: actual movement velocity versus intention to move explosively. Strength Cond J. 2006;28:8691.

    • Search Google Scholar
    • Export Citation
  • 20.

    McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16:7582. PubMed ID: 11834109

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    García-Ramos A, Torrejón A, Pérez-Castilla A, Morales-Artacho AJ, Jaric S. Selective changes in the mechanical capacities of lower-body muscles after cycle-ergometer sprint training against heavy and light resistances. Int J Sports Physiol Perform. 2018;13:290297. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Niewiadomski W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A, Langfort J. Determination and prediction of one repetition maximum (1RM): safety considerations. J Hum Kinet. 2008;19:109120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Garcia-Ramos A, Barboza-Gonzalez P, Ulloa-Diaz D, et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J Sports Sci. 2019;37:22052212. PubMed ID: 31164044 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pérez-Castilla A, Suzovic D, Domanovic A, Fernandes JFT, García-Ramos A. Validity of different velocity-based methods and repetitions-to-failure equations for predicting the 1 repetition maximum during 2 upper-body pulling exercises [published online ahead of print February 6, 2019]. J Strength Cond Res. PubMed ID: 30741875 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scott BR, Duthie GM, Thornton HR, Dascombe BJ. Training monitoring for resistance exercise: theory and applications. Sports Med. 2016;46:687698. PubMed ID: 26780346 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Perez-Castilla A, Garcia-Ramos A, Padial P, et al. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci. 2018;36:13311339. PubMed ID: 28892463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pérez-Castilla A, Piepoli A, Delgado-García G, Garrido-Blanca G, García-Ramos A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res. 2019;33:12581265. PubMed ID: 31034462 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    García-Ramos A, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Gregory Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32:12731279. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pestaña-Melero FL, Haff GG, Rojas FJ, Pérez-Castilla A, García-Ramos A. Reliability of the load–velocity relationship obtained through linear and polynomial regression models to predict the 1-repetition maximum load. J Appl Biomech. 2018;34:184190. PubMed ID: 29252060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WG. Calculations for reliability (Excel spreedsheet). A new view of statistics. http://www.sportsci.org/resource/stats/relycalc.html. Published 2000. Accessed October 22, 2019.

    • Search Google Scholar
    • Export Citation
  • 31.

    Garcia-Ramos A, Ulloa-Diaz D, Barboza-Gonzalez P, et al. Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. PLoS One. 2019;14:e0212085. PubMed ID: 30811432 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 33.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 570 570 217
Full Text Views 42 42 18
PDF Downloads 30 30 13