The Anthropometric, Physiological, and Strength-Related Determinants of Handcycling 15-km Time-Trial Performance

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The aim of this study was to investigate the relationship between selected anthropometric, physiological, and upper-body strength measures and 15-km handcycling time-trial (TT) performance. Methods: Thirteen trained H3/H4 male handcyclists performed a 15-km TT, graded exercise test, 15-second all-out sprint, and 1-repetition-maximum assessment of bench press and prone bench pull strength. Relationship between all variables was assessed using a Pearson correlation coefficient matrix with mean TT velocity representing the principal performance outcome. Results: Power at a fixed blood lactate concentration of 4 mmol·L−1 (r = .927; P < .01) showed an extremely large correlation with TT performance, whereas relative V˙O2peak (peak oxygen uptake) (r = .879; P < .01), power-to-mass ratio (r = .879; P < .01), peak aerobic power (r = .851; P < .01), gross mechanical efficiency (r = 733; P < .01), relative prone bench pull strength (r = .770; P = .03) relative bench press strength (r = .703; P = .11), and maximum anaerobic power (r = .678; P = .15) all demonstrated a very large correlation with performance outcomes. Conclusion: Findings of this study indicate that power at a fixed blood lactate concentration of 4 mmol·L−1, relative V˙O2peak, power-to-mass ratio, peak aerobic power, gross mechanical efficiency, relative upper-body strength, and maximum anaerobic power are all significant determinants of 15-km TT performance in H3/H4 handcyclists.

Nevin is with Strength and Conditioning, School of Human and Social Sciences, Buckinghamshire New University, High Wycombe, United Kingdom. Smith is with Cardiff Metropolitan University, Cardiff, United Kingdom.

Nevin (jonpaul.nevin@bucks.ac.uk) is corresponding author.
  • 1.

    Abel T, Vanlandewijck Y, Verellen J. Handcycling. In: Goosey-Tolfrey V, ed. Wheelchair Sport. Champaign, IL: Human Kinetics; 2010.

  • 2.

    Union Cycliste Internationale. Cycling Regulations, Part 16 Para-Cycling. 2019.

  • 3.

    Abel T, Schneider S, Platen P, Struder HK. Performance diagnostics in handbiking during competition. Spinal Cord. 2006;44(2):211216. PubMed ID: 16172621 doi:

  • 4.

    Perrett C. Elite-adapted wheelchair sports performance: a systematic review. Disabil Rehabil. 2017;39(2):164172. doi:

  • 5.

    Stone B, Mason BS, Warner MB, Goosey-Tolfrey VL. Shoulder and thorax kinematics contribute to increased power output of competitive handcyclists. Scand J Med Sci Sport. 2019;29(6):843853. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Litzenberger S, Mally F, Sabo A. Biomechanics of elite recumbent handcycling: a case study. Sports Eng. 2016;19(3):201211. doi:

  • 7.

    Quittman OJ, Meskemper J, Abel T, et al. Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects. Sports Eng. 2018; 21(4):283294. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Faupin A, Gorce P, Watelain E, Meyer C, Thevenon A. A biomechanical analysis of handcycling: a case study. J Appl Biomech. 2010;26(2):240245. doi:

  • 9.

    Abel T, Burkett B, Thees B, Schneider S, Askew CD, Strüder HK. Effect of three different grip angles on physiological parameters during laboratory handcycling tests in able-bodied participants. Front Physiol. 2015;23(6):331.

    • Search Google Scholar
    • Export Citation
  • 10.

    Arnet U, Van Drongelen S, Van Der Woude LHV, Veeger D. Shoulder load during handcycling at different incline and speed positions. Clin Biomech. 2012;27(1):16. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Arnet U, Van Drongelen S, Schlussel M, Lay V, van der Woude LH, Veeger HE. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Scand J Med Sci Sport. 2014;24(2):386394. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mannion P, Toparlar Y, Clifford E, Hajdukiewicz M, Andrainne T, Blocken B. The impact of arm-crank position on the drag of a Paralympic hand-cyclist. Comput Methods Biomech Biomed Engin. 2019;22(4):386395. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Smith P, Chapman M, Hazelhurst K, Goss-Sampson MA. The influence of crank configuration on muscle activity and torque production during arm crank ergometry. J Electromyogr Kinesiol. 2008;18(4):598605. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stone B, Mason BS, Warner MB, Goosey-Tolfrey VL. Horizontal crank position affects economy and upper limb kinematics of recumbent handcyclists. Med Sci Sports Exerc. 2019;51(11):22652273. PubMed ID: 31634293 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Vegter RJK, Mason BS, Sporrel B, Stone B, Van Der Woude LHV, Goosey-Tolfrey VL. Crank fore-aft position alters the distribution of work over the push and pull phase during synchronous recumbent handcycling in able-bodied participants. PLoS One. 2019;14(8):e0220943. PubMed ID: 31425557 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mason BS, Van der Woude LHV, Goosey-Tolfrey VL. The ergonomics of the wheelchair configuration for optimal performance in the wheelchair court sports. Sports Med. 2013;43(1):2338. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    De Groot S, Postma K, Van Vliet L, Timmermans R, Valent LJ. Mountain time trial time in handcycling: exercise intensity and predictors of race time in people with spinal cord injury. Spinal Cord. 2014;52(6):455461. PubMed ID: 24777165 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Fischer G, Ardigo L, Figueiredo P. Physiological performance determinants of a 22-km handbiking time trail. Int J Sports Physiol Perform. 2016;10(8):965971. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Janssen TWJ, Dallmeijer AJ, Van der Woude LHV. Physical capacity and race performance of handcycle users. J Rehabil Res Dev. 2001;38(1):3340.

  • 20.

    Lovell D, Sheilds D, Beck B, Cuneo R, McLellan C. The aerobic performance of trained and untrained handcyclists with spina cord injury. Eur J Appl Physiol. 2012;112(9):34313437. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Nevin JP, Smith P, Waldron M, et al. Efficacy of an 8-week concurrent strength and endurance training programme on hand cycling performance. J Strength Cond Res. 2018;32(7):18611868. PubMed ID: 29561384 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Faria EW, Parker DL, Faria IE. The science of cycling physiology and training–part 1. Sports Med. 2005;35(4):313337. PubMed ID: 15831060 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Faria EW, Parker DL, Faria IE. The science of cycling factors affecting performance–part 2. Sports Med. 2005;35(4):313337. PubMed ID: 15831060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Quittman OJ, Abel T, Zeller S, Foitschik T, Strüder HK. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures of able-bodied participants. Eur J Appl Physiol. 2018;118(7):14931505. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sanders D, Heijboer M. The anaerobic power reserve and its applicability in professional road cycling. J Sports Sci. 2019;37(6):621629. PubMed ID: 30317920 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Weyand PG, Line JE, Bundle MW. Sprint performance duration relationships are set by the fractional duration of external force application. Am J Physiol. 2006;290(3):758765.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Goosey-Tolfrey V, Keil M, Brooke-Wavell K, De Groot S. A comparison of methods for the estimation of body composition in highly trained wheelchair games players. Int J Sports Med. 2016;37(10):799806. PubMed ID: 27176890 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bertucci W, Duc S, Villerius V, Pernin JN, Grappe F. Validity and reliability of the powertap mobile cycling power meter when compared with the SRM device. Int J Sports Med. 2015;26(10):868873. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Abel T, Burkett B, Schneider S, Lindschulten R, Strüder HK. The exercise profile of an ultra-long handcycling race: the Styrkeproven experience. Spinal Cord. 2010;48(12):894898. PubMed ID: 20421873 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Borg GA. Psychophysical based of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377388. PubMed ID: 7154893

  • 32.

    Garby L, Astrup A. The relationship between the respiratory quotient and the equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443444. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Haff GG, Triplett NT. Essentials of Strength Training and Conditioning. 4th ed. Champaign, IL: Human Kinetics; 2016.

  • 34.

    International Society for the Advancement of Kinanthropometry. International Standards for Anthropometric AssessmentISAK; 2001.

  • 35.

    Stangier C, Abel T, Zeller S, Quittman OJ, Perret C, Struder HK. Comparison of different blood lactate threshold concepts for constant load performance in spinal cord injury handcyclists. Front Physiol. 2019;27(10):1054. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 485 485 161
Full Text Views 7 7 1
PDF Downloads 7 7 1