Improved 2000-m Rowing Performance in a Cool Environment With an External Heating Garment

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Rowers can be in marshaling areas for up to 20 to 25 min before the start of a race, which likely negates any benefits of an active warm-up, especially in cold environments. It is unknown if using a heated jacket following a standardized rowing warm-up can improve 2000-m rowing performance. Methods: On 2 separate occasions, 10 trained male rowers completed a standardized rowing warm-up, followed by 25 min of passive rest before a 2000-m rowing time trial on a rowing ergometer. Throughout the passive rest, the participants wore either a standardized tracksuit top (CON) or an externally heated jacket (HEAT). The trials, presented in a randomized crossover fashion, were performed in a controlled environment (temperature 8°C, humidity 50%). Rowing time-trial performance, core body temperature, and mean skin temperature, along with perceptual variables, were measured. Results: During the 25-min period, core body temperature increased in HEAT and decreased in CON (Δ0.54°C [0.74°C] vs −0.93°C [1.14°C]; P = .02). Additionally, mean skin temperature (30.22°C [1.03°C] vs 28.86°C [1.07°C]) was higher in HEAT versus CON (P < .01). In line with the physiological data, the perceptual data confirmed that participants were more comfortable in HEAT versus CON, and subsequently, rowing performance was improved in HEAT compared with CON (433.1 [12.7] s vs 437.9 [14.4] s, P < .01). Conclusion: The data demonstrate that an upper-body external heating garment worn following a warm-up can improve rowing performance in a cool environment.

Cowper and Goodall are with the Dept of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom. Barwood is with the School of Health and Social Sciences, Leeds Trinity University, Leeds, United Kingdom.

Goodall (stuart.goodall@northumbria.ac.uk) is corresponding author.
  • 1.

    Baudouin A, Hawkins D. Investigation of biomechanical factors affecting rowing performance. J Biomech. 2004;37(7):969976. PubMed ID: 15165867 doi:

  • 2.

    Buckeridge EM, Bull AM, McGregor AH. Biomechanical determinants of elite rowing technique and performance. Scand J Med Sci Sports. 2015;25(2):e176e183. PubMed ID: 25039605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hagerman FC. Applied physiology of rowing. Sports Med. 1984;1(4):303326. PubMed ID: 6390606 doi:

  • 4.

    West DJ, Dietzig BM, Bracken RM, et al. Influence of post-warm-up recovery time on swim performance in international swimmers. J Med Sport. 2013;16(2):172176.

    • Search Google Scholar
    • Export Citation
  • 5.

    Wilkins E, Havenith G. External heating garments used post-warm-up improve upper body power and elite sprint swimming performance. J Sports Eng Tech. 2017;231(2):91101.

    • Search Google Scholar
    • Export Citation
  • 6.

    Zochowski T, Johnson E, Sleivert GG. Effects of varying post-warm-up recovery time on 200-m time-trial swim performance. Int J Sports Physiol Perform. 2007;2(2):201211. PubMed ID: 19124907 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mohr M, Krustrup P, Nybo L, Nielsen JJ, Bangsbo J. Muscle temperature and sprint performance during soccer matches—beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports. 2004;14(3):156162. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Faulkner SH, Ferguson RA, Hodder SG, Havenith G. External muscle heating during warm-up does not provide added performance benefit above external heating in the recovery period alone. Eur J Appl Physiol. 2013;113(11):27132721. PubMed ID: 23974847 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. PubMed ID: 26400696 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gregson WA, Drust B, Batterham A, Cable NT. The effects of pre-warming on the metabolic and thermoregulatory responses to prolonged submaximal exercise in moderate ambient temperatures. Eur J Appl Physiol. 2002;86(6):526533. PubMed ID: 11944101 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gregson WA, Batterham A, Drust B, Cable NT. The influence of pre-warming on the physiological responses to prolonged intermittent exercise. J Sports Sci. 2005;23(5):455464. PubMed ID: 16194994 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kruk B, Pekkarinen H, Manninen K, Hanninen O. Comparison in men of physiological responses to exercise of increasing intensity at low and moderate ambient temperatures. Eur J Appl Physiol. 1991;62(5):353357. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Driller MW, Fell JW, Gregory JR, Shing CM, Williams AD. The effects of high-intensity interval training in well-trained rowers. Int J Sports Physiol Perform. 2009;4(1):110121. PubMed ID: 19417232 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Huang C, Nesser T, Edwards JE. Strength and power determinants of rowing performance. J Exerc Physiol. 2007;10(4):4350.

  • 15.

    Barwood MJ, Corbett J, White DK. Spraying with 0.20% L-menthol does not enhance 5 km running performance in the heat in untrained runners. J Sports Med Phys Fitness. 2014;54(5):595604. PubMed ID: 24844622

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burton AC. Human calorimetry: II. The average temperature of the tissues of the body: three figures. J Nutr. 1935;9(3):261280. doi:

  • 17.

    Gagge AP, Stolwijk JA, Hardy JD. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res. 1967;1(1):120. PubMed ID: 5614624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McGowan CJ, Thompson KG, Pyne DB, Raglin JS, Rattray B. Heated jackets and dryland-based activation exercises used as additional warm-ups during transition enhance sprint swimming performance. J Sci Med Sport. 2016;19(4):354358. PubMed ID: 25987491 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gray SR, De Vito G, Nimmo MA, Farina D, Ferguson RA. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am J Physiol Regul Integr Comp Physiol. 2006;290(2):R376R382. PubMed ID: 16166210 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gray SR, Soderlund K, Watson M, Ferguson RA. Skeletal muscle ATP turnover and single fibre ATP and PCr content during intense exercise at different muscle temperatures in humans. Eur J Physiol. 2011;462(6):885893. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Marino FE. Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med. 2002;36(2):8994. PubMed ID: 11916888 doi:

  • 22.

    Lowry CA, Lightman SL, Nutt DJ. That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J Psychopharmacol. 2009;23(4):392400. PubMed ID: 19074539 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Yanci J, Iturri J, Castillo D, Pardeiro M, Nakamura FY. Influence of warm-up duration on perceived exertion and subsequent physical performance of soccer players. Biol Sport. 2019;36(2):125131. PubMed ID: 31223189 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Raccuglia M, Lloyd A, Filingeri D, Faulkner SH, Hodder S, Havenith G. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation. Eur J Appl Physiol. 2016;116(2):395404. PubMed ID: 26590591 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    de Ruiter CJ, Jones DA, Sargeant AJ, de Haan A. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol. 1999;84(6):11371150. PubMed ID: 10564710 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bishop D. Warm up II: performance changes following active warm up and how to structure the warm up. Sports Med. 2003;33(7):483498. PubMed ID: 12762825 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiologica. 1979;107(1):3337. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Davies CT, Mecrow IK, White MJ. Contractile properties of the human triceps surae with some observations on the effects of temperature and exercise. Eur J Appl Physiol. 1982;49(2):255269. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Sargeant AJ. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol. 1987;56(6):693698. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports. 2010;20(suppl 3):118.

  • 31.

    Stein RB, Gordon T, Shriver J. Temperature dependence of mammalian muscle contractions and ATPase activities. Biophys J. 1982;40(2):97107. PubMed ID: 6216923 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    De Ruiter CJ, De Haan A. Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Eur J Physiol. 2000;440(1):163170. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Charkoudian N, Stachenfeld NS. Reproductive hormone influences on thermoregulation in women. Compr Physiol. 2014;4(2):793804. PubMed ID: 24715568 doi:

  • 34.

    Charkoudian N, Stachenfeld N. Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Auton Neurosci. 2016;196:7580. PubMed ID: 26674572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Harvey O, Crockett HE. Individual differences in temperature changes of women during the course of the menstrual cycle. Hum Biol. 1932;4:453468.

    • Search Google Scholar
    • Export Citation
  • 36.

    Stephenson LA, Kolka MA. Thermoregulation in women. Exerc Sport Sci Rev. 1993;21:231262. PubMed ID: 8504843 doi:

  • 37.

    Huggins R, Glaviano N, Negishi N, Casa DJ, Hertel J. Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis. J Athl Train. 2012;47(3):329338. PubMed ID: 22892415

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 652 652 88
Full Text Views 14 14 0
PDF Downloads 9 9 0