The Novel Single-Stroke Kayak Test: Can It Discriminate Between 200-m and Longer-Distance (500- and 1000-m) Specialists in Canoe Sprint?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To test whether the force–velocity (F–V) relationship obtained during a specific single-stroke kayak test (SSKT) and during nonspecific traditional resistance-training exercises (bench press and prone bench pull) could discriminate between 200-m specialists and longer-distance (500- and 1000-m) specialists in canoe sprint. Methods: A total of 21 experienced male kayakers (seven 200-m specialists and 14 longer-distance specialists) participated in this study. After a familiarization session, kayakers came to the laboratory on 2 occasions separated by 48 to 96 hours. In a randomized order, kayakers performed the SSKT in one session and the bench press and bench pull tests in another session. Force and velocity outputs were recorded against 5 loads in each exercise to determine the F–V relationship and related parameters (maximum force, maximum velocity, F–V slope, and maximum power). Results: The individual F–V relationships were highly linear for the SSKT (r = .990 [.908, .998]), bench press (r = .993 [.974, .999]), and prone bench pull (r = .998 [.992, 1.000]). The F–V relationship parameters (maximum force, maximum velocity, and maximum power) were significantly higher for 200-m specialists compared with longer-distance specialists (all Ps ≤ .047) with large effect sizes (≥0.94) revealing important practical differences. However, no significant differences were observed between 200-m specialists and longer-distance specialists in the F–V slope (P ≥ .477). Conclusions: The F–V relationship assessed during both specific (SSKT) and nonspecific upper-body tasks (bench press and bench pull) may distinguish between kayakers specialized in different distances.

Petrovic, Janicijevic, and Mirkov are with the Faculty of Sport and Physical Education, and Knezevic, the Inst for Medical Research, University of Belgrade, Belgrade, Serbia. García-Ramos and Pérez-Castilla are with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. García-Ramos is with the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile.

Mirkov (dragan.mirkov@fsfv.bg.ac.rs.com) is corresponding author.
  • 1.

    McGuigan MR, Cormack SJ, Gill ND. Strength and power profiling of athletes. Strength Cond J. 2013;35(6):714. doi:

  • 2.

    Chaabene H, Negra Y, Bouguezzi R, et al. Tests for the assessment of sport-specific performance in Olympic combat sports: a systematic review with practical recommendations. Front Physiol. 2018;9:386. PubMed ID: 29692739 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675694. PubMed ID: 23633165 doi:

  • 4.

    García-Ramos A, Jaric S. Two-point method: a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the one-repetition maximum. Strength Cond J. 2018;40(2):5466. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Morin J-B, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cuevas-Aburto J, Ulloa-Díaz D, Barboza-González P, Chirosa-Ríos LJ, Garcia-Ramos A. The addition of very light loads into the routine testing of the bench press increases the reliability of the force-velocity relationship. PeerJ. 2018;6:e5835. PubMed ID: 30425885 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Loturco I, Suchomel T, Kobal R, et al. Force-velocity relationship in three different variations of prone row exercises [published online ahead of print February 27 2018]. J Strength Cond Res. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32(1):5968. PubMed ID: 26398964 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Iglesias-Soler E, Fariñas J, Mayo X, Santos L, Jaric S. Comparison of different regression models to fit the force–velocity relationship of a knee extension exercise. Sports Biomech. 2019;18(2):174189. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Janicijevic D, Garcia-Ramos A, Knezevic OM, Mirkov DM. Feasibility of the two-point method for assessing the force–velocity relationship during lower-body and upper-body isokinetic tests. J Sports Sci. 2019;37(20):23962402. PubMed ID: 31256708 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Marcote-Pequeno R, Garcia-Ramos A, Cuadrado-Penafiel V, Gonzalez-Hernandez JM, Gomez MA, Jimenez-Reyes P. Association between the force-velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. Int J Sports Physiol Perform. 2019;14(2):209215. PubMed ID: 30040003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Levernier G, Pierre S, Laffaye G. Force–velocity–power profile in high-elite boulder, lead, and speed climber competitors. Int J Sports Physiol Perform. 2020;15(7);10121018. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Jimenez-Reyes P, Samozino P, Garcia-Ramos A, Cuadrado-Penafiel V, Brughelli M, Morin J-B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ. 2018;6:e5937. PubMed ID: 30479900 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Van Someren KA, Oliver JE. The efficacy of ergometry determined heart rates for flatwater kayak training. Int J Sports Med. 2002;23(1):2832. PubMed ID: 11774063 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Van Someren KA, Phillips GR, Palmer GS. Comparison of physiological responses to open water kayaking and kayak ergometry. Int J Sports Med. 2000;21(3):200204. PubMed ID: 10834353 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Byrnes WC, Kearney JT. Aerobic and anaerobic contributions during simulated canoe/kayak sprint events. Med Sci Sports Exerc. 1997;29(5):220. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Van Someren KA, Howatson G. Prediction of flatwater kayaking performance. Int J Sports Physiol Perform. 2008;3(2):207218. PubMed ID: 19208929 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Papandreou A, Philippou A, Zacharogiannis E, Maridaki M. Physiological adaptations to high-intensity interval and continuous training in kayak athletes. J Strength Cond Res. 2020;34(8):22582266.  doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pickett CW, Nosaka K, Zois J, Hopkins WG, Blazevich JA. Maximal upper body strength and oxygen uptake are associated with performance in high-level 200-m sprint kayakers. J Strength Cond Res. 2018;32(11):31863192. PubMed ID: 29283928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Garatachea N, García-López D, José Cuevas M, et al. Biological and psychological monitoring of training status during an entire season in top kayakers. J Sports Med Phys Fitness. 2011;51(2):339346. PubMed ID: 21681171

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    López-Plaza D, Alacid F, Rubio , López-Miñarro , Muyor JM, Manonelles P. Morphological and physical fitness profile of young female sprint kayakers. J Strength Cond Res. 2019;33(7):19631970. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Steeves D, Thornley LJ, Goreham JA, Jordan M, Landry SC, Fowles JR. Reliability and validity of a novel trunk strength assessment for high performance sprint flatwater kayakers. Int J Sports Physiol Perform. 2019:14(4):486492. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    García-Pallarés J, García-Fernández M, Sánchez-Medina L, Izquierdo M. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol. 2010;110(1):99107. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    García-Pallarés J, Sánchez-Medina L, Pérez CE, Izquierdo-Gabarren M, Izquierdo M. Physiological effects of tapering and detraining in world-class kayakers. Med Sci Sports Exerc. 2010;42(6):12091214. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hamano S, Ochi E, Tsuchiya Y, Muramatsu E, Suzukawa K, Igawa S. Relationship between performance test and body composition/physical strength characteristic in sprint canoe and kayak paddlers. Open Access J Sports Med. 2015;6:191199. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Van Someren KA, Palmer GS. Prediction of 200-m sprint kayaking performance. Can J Appl Physiol. 2003;28(4):505517. PubMed ID: 12904631 doi:

  • 27.

    García-Ramos A, Haff GG, Padial P, Feriche B. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise. Sports Biomech. 2018;17(1):117130. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench press. J Strength Cond Res. 2017;31(4):11271131. PubMed ID: 28328719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, NY: Lawrence Erlbaum Associates; 1988.

  • 30.

    Rahmani A, Samozino P, Morin J-B, Morel B. A simple method for assessing upper-limb force-velocity profile in bench press. Int J Sports Physiol Perform. 2018;13(2):200207. PubMed ID: 28605252 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Garcia-Ramos A, Jaric S. Optimization of the force–velocity relationship obtained from the bench-press-throw exercise: an a posteriori multicenter reliability study. Int J Sports Physiol Perform. 2019;14(3):317322. PubMed ID: 30160579 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Qin R, Duan C. The principle and applications of Bernoulli equation. J Phys Conf Ser. 2017;916:16. doi:

All Time Past Year Past 30 Days
Abstract Views 302 302 129
Full Text Views 10 10 4
PDF Downloads 8 8 2