Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Cold-water immersion is increasingly used by athletes to support performance recovery. Recently, however, indications have emerged suggesting that the regular use of cold-water immersion might be detrimental to strength training adaptation. Methods: In a randomized crossover design, 11 participants performed two 8-week training periods including 3 leg training sessions per week, separated by an 8-week “wash out” period. After each session, participants performed 10 minutes of either whole-body cold-water immersion (cooling) or passive sitting (control). Leg press 1-repetition maximum and countermovement jump performance were determined before (pre), after (post) and 3 weeks after (follow-up) both training periods. Before and after training periods, leg circumference and muscle thickness (vastus medialis) were measured. Results: No significant effects were found for strength or jump performance. Comparing training adaptations (pre vs post), small and negligible negative effects of cooling were found for 1-repetition maximum (g = 0.42; 95% confidence interval [CI], −0.42 to 1.26) and countermovement jump (g = 0.02; 95% CI, −0.82 to 0.86). Comparing pre versus follow-up, moderate negative effects of cooling were found for 1-repetition maximum (g = 0.71; 95% CI, −0.30 to 1.72) and countermovement jump (g = 0.64; 95% CI, −0.36 to 1.64). A significant condition × time effect (P = .01, F = 10.00) and a large negative effect of cooling (g = 1.20; 95% CI, −0.65 to 1.20) were observed for muscle thickness. Conclusions: The present investigation suggests small negative effects of regular cooling on strength training adaptations.

Poppendieck, Wegmann, Hecksteden, Darup, Schimpchen, Skorski, and Meyer are with the Inst of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany. Poppendieck is also with the Dept of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany. Ferrauti is with the Unit of Training and Exercise Science, Ruhr University Bochum, Bochum, Germany. Kellmann is with the Unit of Sport Psychology, Ruhr University Bochum, Bochum, Germany, and the School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia. Pfeiffer is with the Inst of Sports Science, Johannes Gutenberg University, Mainz, Germany.

Poppendieck (w.poppendieck@hs-mannheim.de) is corresponding author.
  • 1.

    Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747765. PubMed ID: 16937951 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Poppendieck W, Faude O, Wegmann M, Meyer T. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227242. PubMed ID: 23434565

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed ID: 21947816 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):16311639. PubMed ID: 24504431 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yamane M, Teruya H, Nakano M, Ogai R, Ohnishi N, Kosaka M. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. Eur J Appl Physiol. 2006;96(5):572580. PubMed ID: 16372177 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Minett GM, Costello JT. Specificity and context in post-exercise recovery: it is not a one-size-fits-all approach. Front Physiol. 2015;6:130. PubMed ID: 25964762 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yamane M, Ohnishi N, Matsumoto T. Does regular post-exercise cold application attenuate trained muscle adaptation? Int J Sports Med. 2015;36(8):647653. PubMed ID: 25760154 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fröhlich M, Faude O, Klein M, Pieter A, Emrich E, Meyer T. Strength training adaptations after cold-water immersion. J Strength Cond Res. 2014;28(9):26282633. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):42854301. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Broatch JR, Petersen A, Bishop DJ. The influence of post-exercise cold-water immersion on adaptive responses to exercise: a review of the literature. Sports Med. 2018;48(6):13691387. PubMed ID: 29627884 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Allan R, Sharples AP, Close GL, et al. Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. J Appl Physiol. 2017;123(2):451459. PubMed ID: 28546467 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Parízková J, Bůzková P. Relationship between skinfold thickness measured by Harpenden caliper and densitometric analysis of total body fat in men. Hum Biol. 1971;43(1):1621.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Scharhag-Rosenberger F, Meyer T, Walitzek S, Kindermann W. Time course of changes in endurance capacity: a 1-yr training study. Med Sci Sports Exerc. 2009;41(5):11301137. PubMed ID: 19346973 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310319. PubMed ID: 2583179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Worsley PR, Kitsell F, Samuel D, Stokes M. Validity of measuring distal vastus medialis muscle using rehabilitative ultrasound imaging versus magnetic resonance imaging. Man Ther. 2014;19(3):259263. PubMed ID: 24582328 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nässi A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Development of two short measures for recovery and stress in sport. Eur J Sport Sci. 2017;17(7):894903. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kellmann M, Kölling S, Hitzschke B. Das Akutmaß und die Kurzskala zur Erfassung von Erholung und Beanspruchung im Sport—Manual [The Acute Measure and the Short Scale of Recovery and Stress for Sports—Manual]. Hellenthal, Germany: Sportverlag Strauss; 2016.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kellmann M, Kölling S. Recovery and Stress in Sport: A Manual for Testing and Assessment. Abingdon, UK: Routledge; 2019.

  • 19.

    American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987993. PubMed ID: 19847682 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:

  • 22.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683

  • 23.

    Levinger I, Goodman C, Hare DL, Jerums G, Toia D, Selig S. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12(2):310316. PubMed ID: 18078784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cormack SJ, Newton RU, McGuigan MR, Doyle TLA. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131144. PubMed ID: 19208922 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Robey E, Dawson B, Halson S, et al. Effect of evening postexercise cold water immersion on subsequent sleep. Med Sci Sports Exerc. 2013;45(7):13941402. PubMed ID: 23377833 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Figueiredo VC, Roberts LA, Markworth JF, et al. Impact of resistance exercise on ribosome biogenesis is acutely regulated by post-exercise recovery strategies. Physiol Rep. 2016;4(2):e12670. PubMed ID: 26818586 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wen Y, Alimov AP, McCarthy JJ. Ribosome biogenesis is necessary for skeletal muscle hypertrophy. Exerc Sport Sci Rev. 2016;44(3):110115. PubMed ID: 27135313 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fuchs CJ, Kouw IWK, Churchward-Venne TA, et al. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J Physiol. 2020;598(4):755772. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343358. PubMed ID: 24058309

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44(12):17631774. PubMed ID: 25108349 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 268 268 268
Full Text Views 15 15 15
PDF Downloads 12 12 12