Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the effects of 2 upper-body strength-training programs differing in set configuration on bench press 1-repetition maximum (BP1RM), bench press throw peak velocity against 30 kg (BPT30), and handball throwing velocity. Methods: Thirty-five men were randomly assigned to a traditional group (TRG; n = 12), rest redistribution group (RRG; n = 13), or control group (n = 10). The training program was conducted with the bench press exercise and lasted 6 weeks (2 sessions per week): TRG—6 sets × 5 repetitions with 3 minutes of interset rest; RRG—1 set × 30 repetitions with 31 seconds of interrepetition rest. The total rest period (15 min) and load intensity (75% 1RM) were the same for both experimental groups. Subjects performed all repetitions at maximal intended velocity, and the load was adjusted on a daily basis from velocity recordings. Results: A significant time × group interaction was observed for both BP1RM and BPT30 (P < .01) due to the higher values observed at posttest compared with pretest for TRG (effect size [ES] = 0.77) and RRG (ES = 0.56–0.59) but not for the control group (ES ≤ 0.08). The changes in BP1RM and BPT30 did not differ between TRG and RRG (ES = 0.04 and 0.05, respectively). No significant differences in handball throwing velocity were observed between the pretest and posttest (ES = 0.16, 0.22, and 0.02 for TRG, RRG, and control group, respectively). Conclusions: Resistance-training programs based on not-to-failure traditional and rest redistribution set configurations induce similar changes in BP1RM, BPT30, and handball throwing velocity.

Cuevas-Aburto and García-Ramos are with the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile. Jukic is with the Sport Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. González-Hernández is with the Faculty of Health Science, Universidad Europea de Canarias, Tenerife, Spain. Janicijevic is with the Research Center, Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia. Barboza-González is with the Faculty of Education, Universidad Andres Bello, Concepción, Chile. Chirosa-Ríos and García-Ramos are with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Janicijevic (danica.janicijevic@fsfv.bg.ac.rs) is corresponding author.
  • 1.

    Gorostiaga EM, Granados C, Ibáñez J, Izquierdo M. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int J Sports Med. 2005;26(3):225232. PubMed ID: 15776339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011;41(1):1738. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gabbett T, Kelly J, Ralph S, Driscoll D. Physiological and anthropometric characteristics of junior elite and sub-elite rugby league players, with special reference to starters and non-starters. J Sci Med Sports. 2009;12(1):215222. PubMed ID: 18055259 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765785. doi:

  • 6.

    González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sports Sci. 2014;14(8):772781. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724735. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2017;31(3):848867. PubMed ID: 27465625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jukic I, Tufano JJ. Shorter but more frequent rest periods: no effect on velocity and power compared to traditional sets not performed to failure. J Hum Kinet. 2019;66:257268. PubMed ID: 30988859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Oliver JM, Kreutzer A, Jenke SC, Phillips MD, Mitchell JB, Jones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30(1):235243. PubMed ID: 26121432 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Iglesias-Soler E, Carballeira E, Sánchez-Otero T, Mayo X, Jiménez A, Chapman ML. Acute effects of distribution of rest between repetitions. Int J Sports Med. 2012;33(5):351358. PubMed ID: 22318560 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hansen KT, Cronin JB, Newton MJ. The effect of cluster loading on force, velocity, and power during ballistic jump squat training. Int J Sports Physiol Perform. 2011;6(4):455468. PubMed ID: 21934171 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jukic I, Tufano J. Rest redistribution functions as a free and ad-hoc equivalent to commonly used velocity-based training thresholds during clean pulls at different loads. J Hum Kinet. 2019;68:516. PubMed ID: 31531129 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Torrejon A, Janicijevic D, Haff GG, Garcia-Ramos A. Acute effects of different set configurations during a strength-oriented resistance training session on barbell velocity and the force-velocity relationship in resistance-trained males and females. Eur J Appl Physiol. 2019;119(6):14091417. PubMed ID: 30955089 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    García-Ramos A, González-Hernández JM, Baños-Pelegrín E, et al. Mechanical and metabolic responses to traditional and cluster set configurations in the bench press exercise. J Strength Cond Res. 2020;34(3):663670. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Iglesias-Soler E, Mayo X, Rio-Rodriguez D, Carballeira E, Farinas J, Fernandez-Del-Olmo M.Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. J Sports Sci. 2016;34(15):14731484. PubMed ID: 26630355 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Iglesias-Soler E, Fernandez-del-Olmo M, Mayo X, et al. Changes in the force-velocity mechanical profile after short resistance training programs differing in set configurations. J Appl Biomech. 2017;33(2):144152. PubMed ID: 27918682 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hansen KT, Cronin JB, Pickering SL, Newton MJ. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? J Strength Cond Res. 2011;25(8):21182126. PubMed ID: 21747288 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lawton T, Cronin J, Drinkwater E, Lindsell R, Pyne D. The effect of continuous repetition training and intra-set rest training on bench press strength and power. J Sports Med Phys Fitness. 2004;44(4):361367.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Oliver JM, Jagim AR, Sanchez AC, et al. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J Strength Cond Res. 2013;27(11):31163131. PubMed ID: 23736782 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Feriche B. Influence of a cluster set configurations on the adaptations to short-term power training. J Strength Cond Res. 2018;32(4):930937. PubMed ID: 29570595 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Davies TB, Halaki M, Orr R, Helms ER, Hackett DA. Changes in bench press velocity and power after 8 weeks of high-load cluster- or traditional-set structures [published online ahead of print April 17, 2019]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Farinas J, Mayo X, Giraldez-Garcia MA, et al. Set configuration in strength training programs modulates the cross education phenomenon [published online ahead of print May 24, 2019]. J Strength Cond Res.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marques MC, van den Tilaar R, Vescovi JD, Gonzalez-Badillo JJ. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. Int J Sports Physiol Perform. 2007;2(4):414422. PubMed ID: 19171959 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins W. Calculations for reliability (Excel spreedsheet). A New View of Statistics. 2000. http://www.sportsci.org/resource/stats/relycalc.html%7B#%7Dexcel. Accessed February 13, 2020.

    • Search Google Scholar
    • Export Citation
  • 26.

    Walker S, Davis L, Avela J, Hakkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kinesiol. 2012;22(3):356362. PubMed ID: 22245619 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Burd NA, Andrews RJ, West DWD, et al . Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351362. PubMed ID: 22106173 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol. 2004;29(5):527543. PubMed ID: 15507691 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lehman G, Drinkwater EJ, Behm DG. Correlation of throwing velocity to the results of lower-body field tests in male college baseball players. J Strength Cond Res. 2013;27(4):902908. PubMed ID: 22706576 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moir GL, Graham BW, Davis SE, Guers JJ, Witmer CA. Effect of cluster set configurations on mechanical variables during the deadlift exercise. J Hum Kinet. 2013;39:1523. PubMed ID: 24511337 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 474 474 304
Full Text Views 19 19 7
PDF Downloads 12 12 6