Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To replicate previous genome-wide association study identified sprint-related polymorphisms in 3 different cohorts of top-level sprinters and to further validate the obtained results in functional studies. Methods: A total of 240 Japanese, 290 Russians, and 593 Brazilians were evaluated in a case-control approach. Of these, 267 were top-level sprint/power athletes. In addition, the relationship between selected polymorphisms and muscle fiber composition was evaluated in 203 Japanese and 287 Finnish individuals. Results: The G allele of the rs3213537 polymorphism was overrepresented in Japanese (odds ratio [OR]: 2.07, P = .024) and Russian (OR: 1.93, P = .027) sprinters compared with endurance athletes and was associated with an increased proportion of fast-twitch muscle fibers in Japanese (P = .02) and Finnish (P = .041) individuals. A meta-analysis of the data from 4 athlete cohorts confirmed that the presence of the G/G genotype rather than the G/A+A/A genotypes increased the OR of being a sprinter compared with controls (OR: 1.49, P = .01), endurance athletes (OR: 1.79, P = .001), or controls + endurance athletes (OR: 1.58, P = .002). Furthermore, male sprinters with the G/G genotype were found to have significantly faster personal times in the 100-m dash than those with G/A+A/A genotypes (10.50 [0.26] vs 10.76 [0.31], P = .014). Conclusion: The rs3213537 polymorphism found in the CPNE5 gene was identified as a highly replicable variant associated with sprinting ability and the increased proportion of fast-twitch muscle fibers, in which the homozygous genotype for the major allele (ie, the G/G genotype) is preferable for performance.

Guilherme, Martins, and Lancha Junior are with the Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil. Semenova, Borisov, Kostryukova, Kulemin, Larin, and Generozov are with the Dept of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia. Semenova is also with the Dept of Biochemistry, Kazan Federal University, Kazan, Russia. Zempo is with the Faculty of Health and Nutrition, Tokyoseiei College, Katsushika City, Tokyo, Japan. Miyamoto-Mikami, Kumagai, Ichinoseki-Sekine, Naito, and Fuku are with the Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan. Kumagai is also with the Japanese Society for the Promotion of Science, Tokyo, Japan. Tobina is with the Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki, Japan. Shiose is with the Faculty of Education, University of Miyazaki, Miyazaki, Japan. Kakigi is with the Faculty of Medicine, Juntendo University, Tokyo, Japan. Tsuzuki is with the Faculty of Pharmacy, Meijo University, Nagoya, Japan. Ichinoseki-Sekine is also with the Faculty of Liberal Arts, Open University of Japan, Chiba, Japan. Kobayashi is with the Dept of General Medicine, Mito Medical Center, Tsukuba University Hospital, Tsukuba, Japan. Borisov is also with the Inst for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany. Ahmetov is with the Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia; the Dept of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia; the Sports Genetics Laboratory, St Petersburg Research Inst of Physical Culture, St Petersburg, Russia; and the Research Inst for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.

Guilherme (jplfguilherme@hotmail.com) is corresponding author.
  • 1.

    Haugen TA, Breitschadel F, Seiler S. Sprint mechanical variables in elite athletes: are force-velocity profiles sport specific or individual? PLoS One. 2019;14(7):e0215551. PubMed ID: 31339890 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):39213930. PubMed ID: 22422028 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Slawinski J, Termoz N, Rabita G, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27(1):4554. PubMed ID: 26644061 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Haugen T, Seiler S, Sandbakk O, Tonnessen E. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sports Med Open. 2019;5(1):44. PubMed ID: 31754845 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Missitzi J, Geladas N, Klissouras V. Heritability in neuromuscular coordination: implications for motor control strategies. Med Sci Sports Exerc. 2004;36(2):233240. PubMed ID: 14767245 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Missitzi J, Geladas N, Klissouras V. Genetic variation of maximal velocity and EMG activity. Int J Sports Med. 2008;29(3):177181. PubMed ID: 17614025 doi:

  • 7.

    Maciejewska-Skrendo A, Sawczuk M, Cie˛szczyk P, Ahmetov I. Genes and power athlete status. In: Barh D, Ahmetov I, eds. Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions. Cambridge, MA: Academic Press; 2019:4172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Guilherme JPLF, Silva MS, Bertuzzi R, Lancha Junior AH. The AGTR2 rs11091046 (A>C) polymorphism and power athletic status in top-level Brazilian athletes. J Sports Sci. 2018;36(20):23272332. PubMed ID: 29561708 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Papadimitriou ID, Lucia A, Pitsiladis YP, et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics. 2016;17(1):285. PubMed ID: 27075997 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pickering C, Suraci B, Semenova EA, et al. A genome-wide association study of sprint performance in elite youth football players. J Strength Cond Res. 2019;33(9):23442351. PubMed ID: 31343553 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kumagai H, Tobina T, Ichinoseki-Sekine N, et al. Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women. J Appl Physiol. 2018;124(5):13771384. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kawai Y, Mimori T, Kojima K, et al. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. J Hum Genet. 2015;60(10):581587. PubMed ID: 26108142 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Taylor DL, Jackson AU, Narisu N, et al. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc Natl Acad Sci. 2019;116(22):1088310888. PubMed ID: 31076557 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Scott LJ, Erdos MR, Huyghe JR, et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Commun. 2016;7(1):11764. PubMed ID: 27353450 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Creutz CE, Tomsig JL, Snyder SL, et al. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from paramecium to humans. J Biol Chem. 1998;273(3):13931402. PubMed ID: 9430674 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tomsig JL, Creutz CE. Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein. Biochemistry. 2000;39(51):1616316175. PubMed ID: 11123945 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cowland JB, Carter D, Bjerregaard MD, Johnsen AH, Borregaard NLollike K. Tissue expression of copines and isolation of copines I and III from the cytosol of human neutrophils. J Leukoc Biol. 2003;74(3):379388. PubMed ID: 12949241 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Burk K, Ramachandran B, Ahmed S, et al. Regulation of dendritic spine morphology in hippocampal neurons by copine-6. Cereb Cortex. 2018;28(4):10871104. PubMed ID: 28158493 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reinhard JR, Kriz A, Galic M, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7(1):11613. PubMed ID: 27194588 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wang KS, Zuo L, Pan Y, Xie C, Luo X. Genetic variants in the CPNE5 gene are associated with alcohol dependence and obesity in Caucasian populations. J Psychiatr Res. 2015;71:17. PubMed ID: 26522866 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ding X, Jin Y, Wu Y, et al. Localization and cellular distribution of CPNE5 in embryonic mouse brain. Brain Res. 2008;1224:2028. PubMed ID: 18614158 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    D’Amours G, Bureau G, Boily MJ, Cyr M. Differential gene expression profiling in the mouse brain during motor skill learning: focus on the striatum structure. Behav Brain Res. 2011;221(1):108117. PubMed ID: 21376085 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wachter T, Rohrich S, Frank A, et al. Motor skill learning depends on protein synthesis in the dorsal striatum after training. Exp Brain Res. 2010;200(3–4):319323. PubMed ID: 19823812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nanci Maria F, Eric D, Mario B, Emmanuel VP. Comparison of peak muscle power between Brazilian and French girls. Am J Hum Biol. 2002;14(3):364371. PubMed ID: 12001094 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Behmer LP Jr, Fournier LR. Working memory modulates neural efficiency over motor components during a novel action planning task: an EEG study. Behav Brain Res. 2014;260:17. PubMed ID: 24291024 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fu M, Yu X, Lu J, Zuo Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 2012;483(7387):9295. PubMed ID: 22343892 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tillin NA, Jimenez-Reyes P, Pain MT, Folland JP. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42(4):781790. PubMed ID: 19952835 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):6676. PubMed ID: 22938509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    McDuff DR, Baron D. Substance use in athletics: a sports psychiatry perspective. Clin Sports Med. 2005;24(4):885897. PubMed ID: 16169452 doi:

  • 31.

    Kaplan MM, Sultana N, Benedetti A, et al. Calcium influx and release cooperatively regulate AChR patterning and motor axon outgrowth during neuromuscular junction formation. Cell Rep. 2018;23(13):38913904. PubMed ID: 29949772 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Terzis G, Spengos K, Methenitis S, Aagaard P, Karandreas N, Bogdanis G. Early phase interference between low-intensity running and power training in moderately trained females. Eur J Appl Physiol. 2016;116(5):10631073. PubMed ID: 27040693 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Methenitis S, Spengos K, Zaras N, et al. Fiber type composition and rate of force development in endurance- and resistance-trained individuals. J Strength Cond Res. 2019;33(9):23882397. PubMed ID: 28737590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Methenitis S, Karandreas N, Spengos K, Zaras N, Stasinaki AN, Terzis G. Muscle fiber conduction velocity, muscle fiber composition, and power performance. Med Sci Sports Exerc. 2016;48(9):17611771. PubMed ID: 27128672 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trappe TA. Skeletal muscle signature of a champion sprint runner. J Appl Physiol. 2015;118(12):14601466. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 563 563 161
Full Text Views 11 11 4
PDF Downloads 8 8 5