Cardiorespiratory Responses to Constant and Varied-Load Interval Training Sessions

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the cardiorespiratory responses of a traditional session of high-intensity interval training session with that of a session of similar duration and average load, but with decreasing workload within each bout in cyclists and runners. Methods: A total of 15 cyclists (maximal oxygen uptake [V˙O2max] 62 [6] mL·kg−1·min−1) and 15 runners (V˙O2max 58 [4] mL·kg−1·min−1) performed both sessions at the maximal common tolerable load on different days. The sessions consisted of four 4-minute intervals interspersed with 3 minutes of active recovery. Power output was held constant for each bout within the traditional day, whereas power started 40 W (2 km·h−1) higher and finished 40 W (2 km·h−1) lower than average within each bout of the decremental session. Results: Average oxygen uptake during the high-intensity intervals was higher in the decremental session in cycling (89 [4]% vs 86 [5]% of V˙O2max, P = .002) but not in running (91 [4]% vs 90 [4]% of V˙O2max, P = .38), as was the time spent >90% of V˙O2max and the time spent >90% of peak heart rate. Average heart rate (P < .001), pulmonary ventilation (P < .001), and blood lactate concentration (P < .001) were higher during the decremental sessions in both cycling and running. Conclusions: Higher levels of physiological perturbations were achieved during decremental sessions in both cycling and running. These differences were, however, more prominent in cycling, thus making cycling a more attractive modality for testing the effects of a training intervention.

Beltrami, Roos, von Ow, and Spengler are with the Exercise Physiology Lab, Inst of Human Movement Sciences and Sport, ETH Zurich, Zürich, Switzerland. Spengler is also with the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.

Spengler (christina.spengler@hest.ethz.ch) is corresponding author.
  • 1.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sport Med. 2013;43(5):313338. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sandbakk Ø, Sandbakk SB, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27(7):19741980. PubMed ID: 23037620 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Seiler S, Jøranson K, Olesen B V, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):7483. PubMed ID: 21812820 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rønnestad BR, Hansen J. Optimizing Interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):9991006. PubMed ID: 23942167 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Turnes T, de Aguiar RA, Cruz RSdO, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rønnestad BR, Hansen J, Vegge G, Tønnessen E, Slettaløkken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143151. PubMed ID: 24382021 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Esfarjani F, Laursen PB. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport. 2007;10(1):2735. PubMed ID: 16876479 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Helgerud J, Høydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665671. PubMed ID: 17414804 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nordsborg NB, Lundby C, Leick L, Pilegaard H. Relative workload determines exercise-induced increases in PGC-1alpha mRNA. Med Sci Sports Exerc. 2010;42(8):14771484. PubMed ID: 20139785 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferguson C, Wilson J, Birch KM, Kemi OJ. Application of the speed-duration relationship to normalize the intensity of high-intensity interval training. PLoS One. 2013;8(11):e76420. PubMed ID: 24244266 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sylta Ø, Tønnessen E, Hammarström D, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):21652174. PubMed ID: 27300278 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Vesterinen V, Nummela A, Äyrämö S, et al. Monitoring training adaptation with a submaximal running test under field conditions. Int J Sports Physiol Perform. 2016;11(3):393399. PubMed ID: 26308590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Valstad S, von Heimburg E, Welde B, van den Tillaar R. Comparison of long and short high-intensity interval exercise bouts on running performance, physiological and perceptual responses. Sport Med Int Open. 2018;02(01):E20E27. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Billat V, Petot H, Karp JR, Sarre G, Morton RH, Mille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113(2):385394. PubMed ID: 22752344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Taylor K, Seegmiller J, Vella CA. The decremental protocol as an alternative protocol to measure maximal oxygen consumption in athletes. Int J Sports Physiol Perform. 2016;11(8):10941099. PubMed ID: 27002933 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Beltrami FG, Froyd C, Mauger AR, Metcalfe AJ, Marino F, Noakes TD. Conventional testing methods produce submaximal values of maximum oxygen consumption. Br J Sports Med. 2012;46(1):2329. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sousa A, Fernandes R, Boas J, Figueiredo P. High-intensity interval training in different exercise modes: lessons from time to exhaustion. Int J Sports Med. 2018;39(9):668673. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Miller MR, Hankinson J, Brusasco V,et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319338. doi:

  • 20.

    Lansing RW, Im BS, Thwing JI, Legedza AT, Banzett RB. The perception of respiratory work and effort can be independent of the perception of air hunger. Am J Respir Crit Care Med. 2000;162(5):16901696. PubMed ID: 11069798 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiology. 1986;60(6):20202027. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wilkerson DP, Koppo K, Barstow TJ, Jones AM. Effect of work rate on the functional “gain” of phase II pulmonary O2 uptake response to exercise. Respir Physiol Neurobiol. 2004;142(2-3):211223. PubMed ID: 15450481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ozyener F, Rossiter HB, Ward SA, Whipp BJ. Oxygen uptake kinetics during incremental- and decremental-ramp cycle ergometry. J Sports Sci Med. 2011;10(3):584589. PubMed ID: 24150637

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Billat VL, Richard R, Binsse VM, Koralsztein JP, Haouzi P. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol. 1998;85(6):21182124. PubMed ID: 9843534 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Billat V, Binsse V, Petit B, Koralsztein JP. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106(1):3845. PubMed ID: 9783059 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol. 1996;58(1):2150. PubMed ID: 8815793 doi:

  • 27.

    Zhou B, Conlee RK, Jensen R, Fellingham GW, George JD, Fisher AG. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc. 2001;33(11):18491854. PubMed ID: 11689734 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol. 2000;81(3):214221. PubMed ID: 10638380 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol. 1989;67(4):13191322. PubMed ID: 2793730 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Wüst RCI, McDonald JR, Sun Y, et al. Slowed muscle oxygethis unexpected finding might be the protocol on blood flow or recruitment dynamics. J Physiol. 2014;592(8):18571871. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hogan MC, Roca J, West JB, Wagner PD. Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol. 1989;66(3):12191226. PubMed ID: 2708246 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236243. PubMed ID: 4723033 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tanner DA, Duke JW, Stager JM. Ventilatory patterns differ between maximal running and cycling. Respir Physiol Neurobiol. 2014;191(1):916. doi:

  • 34.

    Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running: lessons from triathletes. Sports Med. 2009;39(3):179206. PubMed ID: 19290675 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol. 1992;72(5):18181825. PubMed ID: 1601791 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Schoenmakers PPJM, Reed KE. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions. J Sci Med Sport. 2019;22(4):462466. PubMed ID: 30297216 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34(11):18011807. PubMed ID: 12439086 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1004 1005 216
Full Text Views 30 30 6
PDF Downloads 27 27 4