Moderate- and High-Intensity Inspiratory Muscle Training Equally Improves Inspiratory Muscle Strength and Endurance—A Double-Blind Randomized Controlled Trial

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background and Objective: Inspiratory muscle training (IMT) produced outstanding results in the physical performance of active subjects; however, little is known about the best training intensity for this population. The objective was to investigate the impact of an IMT of high intensity, using the critical inspiratory pressure (CIP), on inspiratory muscle strength (IMS), inspiratory muscle endurance (IME), peak power, and oxygen uptake of recreational cyclists; and to compare these results with moderate-intensity IMT (60% of maximal inspiratory pressure [MIP]). Methods: Thirty apparently healthy male recreational cyclists, 20–40 years old, underwent 11 weeks of IMT (3 times per week; 55 min per session). Participants were randomized into 3 groups: sham group (6 cmH2O; n = 8); 60% MIP (MIP60; n = 10) and CIP (n = 12). All participants performed the IMS test and incremental IME test at the first, fifth, ninth, and 13th weeks of the experimental protocol. Cardiopulmonary exercise testing was performed on an electromagnetic braking cycle ergometer pre-IMT and post-IMT. Data were analyzed using a 2-way repeated measures ANOVA (group and period factors). Results: IMS increased in CIP and MIP60 groups at the ninth and 13th weeks compared with the sham group (P < .001; β = 0.99). Regarding IME, there was an interaction between the CIP and MIP60 groups in all periods, except in the initial evaluation (P < .001; β = 1.00). Peak power (in watts) increased after IMT in CIP and MIP60 groups (P = .01; β = 0.67). Absolute oxygen uptake did not increase after IMT (P = .49; β = 0.05). Relative oxygen uptake to lean mass values did not change significantly (P = .48; β = 0.05). Conclusion: High-intensity IMT is beneficial on IMS, IME, and peak power, but does not provide additional gain to moderate intensity in recreational cyclists.

Rehder-Santos, Abreu, Signini, Silva, Sakaguchi, and Catai are with the Cardiovascular Physical Therapy Laboratory, Dept of Physical Therapy, Physical Exercise Research Center, Federal University of São Carlos, São Carlos, São Paulo, Brazil. Dato is with the Nutrition Course, Central University of São Paulo, São Carlos, São Paulo, Brazil.

Catai (mcatai@ufscar.br) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (pdf 138 KB)
    • Supplementary Material 2 (pdf 198 KB)
  • 1.

    Witt JD, Guenette JA, Rupert JL, McKenzie DC, Sheel AW. Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol. 2007;584(3):10191028. PubMed ID: 17855758 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    HajGhanbari B, Yamabayashi C, Buna TR, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res. 2013;27(6):16431663. PubMed ID: 22836606 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Karsten M, Ribeiro GS, Esquivel MS, Matte DL. The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: a systematic review and meta-analysis. Phys Ther Sport. 2018;34:92104. PubMed ID: 30261349 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sales ATN, Fregonezi GAF, Ramsook AH, Guenette JA, Lima INDF, Reid WD. Respiratory muscle endurance after training in athletes and non-athletes: a systematic review and meta-analysis. Phys Ther Sport. 2016;17:7686. PubMed ID: 26626464 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. PubMed ID: 21694556 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sturdy G, Hillman D, Green D, Jenkins S, Cecins N, Eastwood P. Feasibility of high-intensity, interval-based respiratory muscle training in COPD. Chest. 2003;123(1):142150. PubMed ID: 12527615 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rehder-Santos P, Minatel V, Milan-Mattos JC, et al. Critical inspiratory pressure–a new methodology for evaluating and training the inspiratory musculature for recreational cyclists: study protocol for a randomized controlled trial. Trials. 2019;20(1):258. PubMed ID: 31064379 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol-Regul Integr Comp Physiol. 2008;294(2):R585R593. PubMed ID: 18056980 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vanhatalo A, Black MI, DiMenna FJ, et al. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type: critical power and muscle fibre types. J Physiol. 2016;594(15):44074423. PubMed ID: 26940850 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ. Intensity-dependent tolerance to exercise after attaining VO2max in humans. J Appl Physiol. 2003;95(2):483490. PubMed ID: 12665540 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM. Effects of pacing strategy on work done above critical power during high-intensity exercise. Med Sci Sports Exerc. 2013;45(7):13771385. PubMed ID: 23377832 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Burnley M, Jones AM. Power–duration relationship: physiology, fatigue, and the limits of human performance. Eur J Sport Sci. 2018;18(1):112. PubMed ID: 27806677 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bergstrom HC, Housh TJ, Zuniga JM, et al. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test: J Strength Cond Res. 2014;28(3):592600. PubMed ID: 24566607 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vandewalle H, Thomaïdis M, Jousselin E, et al. Critical velocity of continuous and intermittent running exercise: an example of the limits of the critical power concept. Eur J Appl Physiol. 1996;73(5):484487. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cheng C-F, Yang Y-S, Lin H-M, Lee C-L, Wang C-Y. Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur J Appl Physiol. 2012;112(4):12511260. PubMed ID: 21769731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zagatto A, Miranda MF, Gobatto CA. Critical power concept adapted for the specific table tennis test: comparisons between exhaustion criteria, mathematical modeling, and correlation with gas exchange parameters. Int J Sports Med. 2011;32(7):503510. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Martin B, Heintzelman M, Chen HI. Exercise performance after ventilatory work. J Appl Physiol. 1982;52(6):15811585. PubMed ID: 7107468 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Walsh ML. Whole body fatigue and critical power: a physiological interpretation. Sports Med. 2000;29(3):153166. PubMed ID: 10739266 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. PubMed ID: 20332509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, NY: Lawrence Erlbaum Associates; 1988.

  • 21.

    Hautmann H, Hefele S, Schotten K, Huber RM. Maximal inspiratory mouth pressures (PIMAX) in healthy subjects—what is the lower limit of normal? Respir Med. 2000;94(7):689693. PubMed ID: 10926341 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kernan W. Stratified randomization for clinical trials. J Clin Epidemiol. 1999;52(1):1926. PubMed ID: 9973070 doi:

  • 23.

    American Heart Association. Exercise Testing and Training of Apparently Healthy Individuals: A Handbook for Physicians. Dallas, TX: American Heart Association; 1972.

    • Search Google Scholar
    • Export Citation
  • 24.

    Souza RB. Pressões respiratórias estáticas Máximas. J Pneumol. 2002;28(suppl 3):S155S165.

  • 25.

    Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719727. PubMed ID: 10412550 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Balady GJ, Arena R, Sietsema K, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191225. PubMed ID: 20585013 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wasserman K, ed. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 28.

    American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518624. doi:

  • 29.

    Pereira CAC. Diretrizes para testes de função pulmonar. J Bras Pneumol. 2002;28(suppl 3):S1S82.

  • 30.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:.

  • 31.

    Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA. Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol. 2007;156(2):137146. PubMed ID: 16996322 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    West CR, Taylor BJ, Campbell IG, Romer LM. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury. Scand J Med Sci Sports. 2014;24(5):764772. PubMed ID: 23530708 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Chiappa GR, Roseguini BT, Vieira PJC, et al. Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure. J Am Coll Cardiol. 2008;51(17):16631671. PubMed ID: 18436118 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Segizbaeva MO, Timofeev NN, Donina ZA, Kur’yanovich EN, Aleksandrova NP. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise. Adv Exp Med Biol. 2015;840:3543. PubMed ID: 25248344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hellyer NJ, Folsom IA, Gaz DV, Kakuk AC, Mack JL, Ver Mulm JA. Respiratory muscle activity during simultaneous stationary cycling and inspiratory muscle training. J Strength Cond Res. 2015;29(12):35173522. PubMed ID: 26584054 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cahalin LP, Arena R. Novel methods of inspiratory muscle training via the Test of Incremental Respiratory Endurance (TIRE). Exerc Sport Sci Rev. 2015;43(2):8492. PubMed ID: 25607279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rehder-Santos P, Minatel V, Ribeiro B, et al. Age is the main factor related to expiratory flow limitation during constant load exercise. Clinics. 2018;73:e439. PubMed ID: 30379226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions: factors that make champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Snell PG, Mitchell JH. The role of maximal oxygen uptake in exercise performance. Clin Chest Med. 1984;5(1):5162. PubMed ID: 6723243

All Time Past Year Past 30 Days
Abstract Views 628 628 149
Full Text Views 22 22 1
PDF Downloads 23 23 0