Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The objective of this study was to analyze the effects of a conditioning activity (CA) composed of continuous countermovement jumps on twitch torque production and 30-m sprint times. Methods: A total of 12 sprint athletes, 10 men (23.5 [7.7] y) and 2 women (23.0 [2.8] y), volunteered to participate in this study. The participants were evaluated in 2 sessions as follows: (1) to determine the effects of the CA (3 sets of 5 continuous vertical jumps with a 1-min interval between sets) on 30-m sprint performance over time (2, 4, 6, 8, and 10 min) and (2) to evaluate twitch peak torque to determine the magnitude and time course of the induced postactivation potentiation at the same recovery intervals. Results: Mixed-model analysis of variance with Bonferroni post hoc verified that there was a decrease on the 30-m sprint time at 2 minutes (P = .01; Δ = 2.78%; effect size [ES] = 0.43) and 4 minutes (P = .02; Δ = 2%, ES = 0.30) compared with pre when the CA preceded the sprints. The peak torque of quadriceps also showed significant increase from pretest to 2 minutes (P < .01; Δ = 17.0% [12.2%]; ES = 0.45) and 4 minutes (P = .02; Δ = 7.2% [8.8%]; ES = 0.20). Conclusion: The inclusion of CA composed of continuous countermovement jumps in the warm-up routine improved 30-m sprint performance at 2- and 4-minute time intervals after the CA (postactivation performance enhancement). Since postactivation potentiation was confirmed with electrical stimulation at the time when sprint performance increased, it was concluded that postactivation potentiation may have contributed to the observed performance increases.

Zimmermann, Knihs, Diefenthaeler, and Dal Pupo are with the Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil. Zimmermann is also with the Regional University of Blumenau, Blumenau, Brazil. MacIntosh is with the Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.

Zimmermann (hbzim@hotmail.com) is corresponding author.
  • 1.

    Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585595. PubMed ID: 16026172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    MacIntosh BR, Robillard M-E, Tomaras EK. Should postactivation potentiation be the goal of your warm-up? Appl Physiol Nutr Metab. 2012;37(3):546550. PubMed ID: 22515147 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zimmermann HB, MacIntosh BR, Dal Pupo J. Does postactivation potentiation (PAP) increase voluntary performance? Appl Physiol Nutr Metab. 2020;45(4):349356. PubMed ID: 31557447 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Blazevich AJ, Babault N. Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front Physiol. 2019;10:1359. PubMed ID: 31736781 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cuenca-Fernández F, Smith IC, Jordan MJ, et al. Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: a pilot study. Appl Physiol Nutr Metab. 2017;42(10):11221125. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chiu LZF, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res. 2003;17(4):671677. PubMed ID: 14636093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147166. PubMed ID: 19203135 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Baudry S, Klass M, Duchateau J. Postactivation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol. 2005;98(4):12431250. PubMed ID: 15557015 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Baudry S, Duchateau J. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol. 2007;102(4):13941401. PubMed ID: 17204572 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bevan HR, Cunningham DJ, Tooley EP, Owen NJ, Cook CJ, Kilduff LP. Influence of postactivation potentiation on sprinting performance in professional rugby players. J Strength Cond Res. 2010;24(3):701705. PubMed ID: 20145565 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Crewther BT, Cook C, Cardinale M, Weatherby R. Two emerging concepts for elite athletes cortisol and testosterone. Rev Lit Arts Am. 2011;41(2):103123. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Turner AP, Bellhouse S, Kilduff LP, Russell M. Postactivation potentiation of sprint acceleration performance using plyometric exercise. J Strength Cond Res. 2015;29(2):343350. PubMed ID: 25187244 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bergmann J, Kramer A, Gruber M. Repetitive hops induce postactivation potentiation in triceps surae as well as an increase in the jump height of subsequent maximal drop jumps. PLoS One. 2013;8(10):e77705. PubMed ID: 24147061 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bridgeman LA, McGuigan MR, Gill ND, Dulson DK. The effects of accentuated eccentric loading on the drop jump exercise and the subsequent postactivation potentiation response. J Strength Cond Res. 2016;31(6):16201626. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Chen ZR, Wang YH, Peng HT, Yu CF, Wang MH. The acute effect of drop jump protocols with different volumes and recovery time on countermovement jump performance. J Strength Cond Res. 2013;27(1):154158. PubMed ID: 23249768 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bogdanis GC, Tsoukos A, Veligekas P. Improvement of long-jump performance during competition using a plyometric exercise. Int J Sports Physiol Perform. 2017;12(2):235240. PubMed ID: 27249821 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    de Poli RAB, Boullosa DA, Malta ES, et al. Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res. 2020;34(9):2465–2475. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Boullosa D, Abad CCC, Reis VP, et al. Effects of drop jumps on 1000-m performance time and pacing in elite male and female endurance runners. Int J Sports Physiol Perform. 2020;15(7):10431046. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Till KA, Cooke C. The effects of postactivation potentiation on sprint and jump performance of male academy soccer players. J Strength Cond Res. 2009;23(7):19601967. PubMed ID: 19855319 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231240. PubMed ID: 26508319 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wilson JMC, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854859. PubMed ID: 22580978 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Johnson M, Baudin P, Ley AL, Collins DF. A warm-up routine that incorporates a plyometric protocol potentiates the force-generating capacity of the quadriceps muscles. J Strength Cond Res. 2019;33(2):380389. PubMed ID: 28595235 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fleiss JL. Design and Analysis of Clinical Experiments. New York, NY: Willey; 1986.

  • 24.

    Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand. 2003;178(2):165173. PubMed ID: 12780391 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Houston ME, Green HJ, Stull JT. Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle. Pflugers Arch. 1985;403(4):348352. PubMed ID: 3839303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pääsuke M, Saapar L, Ereline J, Gapeyeva H, Requena B, Oöpik V. Postactivation potentiation of knee extensor muscles in power- and endurance-trained, and untrained women. Eur J Appl Physiol. 2007;101(5):577585. PubMed ID: 17674025 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Boullosa D, Del Rosso S, Behm DG, Foster C. Post-activation potentiation (PAP) in endurance sports: a review. Eur J Sport Sci. 2018;18(5):595610. PubMed ID: 29490594 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Low JL, Ahmadi H, Kelly LP, Willardson J, Boullosa D, Behm DG. Prior band-resisted squat jumps improves running and neuromuscular performance in middle-distance runners. J Sport Sci Med. 2019;18(2):301315.

    • Search Google Scholar
    • Export Citation
  • 29.

    Sale D. Postactivation potentiation: role in performance. Br J Sports Med. 2004;38(4):386387. PubMed ID: 15273166 doi:

  • 30.

    Behm DG. Force maintenance with submaximal fatiguing contractions. Can J Appl Physiol. 2004;29(3):274290. PubMed ID: 15199227 doi:

  • 31.

    Byrne PJ, Kenny J, O’Rourke B. Acute potentiating effect of depth jumps on sprint performance. J Strength Cond Res. 2014;28(3):610615. PubMed ID: 23799423 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kümmel J, Bergmann J, Prieske O, Kramer A, Granacher U, Gruber M. Effects of conditioning hops on drop jump and sprint performance: a randomized crossover pilot study in elite athletes. BMC Sports Sci Med Rehabil. 2016;8:1. PubMed ID: 26835128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sport Med. 2015;45(11):15231546. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Cairns SP, Borrani F. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol. 2015;593(21):47134727. PubMed ID: 26400207 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 512 512 254
Full Text Views 15 15 5
PDF Downloads 15 15 5