Effect of Photobiomodulation on Critical Swimming Velocity: A Randomized, Crossover, Double-Blind, and Placebo-Controlled Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the acute effect of photobiomodulation (PBM) on swimming critical velocity (CV). Methods: A total of 15 male federated swimmers (20.9 [2.4] y old) participated in this study. Three sets of front crawl were performed at distances of 100, 200, and 400 m to determine the CV under 3 experimental conditions: PBM (420 J), placebo (PLA), and control (C) in this randomized, crossover, double-blind, and placebo-controlled study. One-way analysis of variance for repeated measurements was used for statistical analyses. Results: The results showed that the prior application of PBM did not have ergogenic effects on CV and front crawl swimming performance: CV (PBM = 1.15 [0.15]; PLA = 1.20 [0.25]; C = 1.15 [0.14] m·s−1), swim time (ST) 100 m (PBM = 65.5 [6.3]; PLA = 65.2 [5.6]; C = 66.0 [5.9] s), ST 200 m (PBM = 148.5 [17.9]; PLA = 149.4 [16.4]; C = 150.1 [17.9] s), and ST 400 m (PBM = 327.7 [38.2]; PLA = 321.6 [47.7]; C = 329.5 [41.2] s). Conclusions: A PBM application prior to front crawl swimming test did not significantly modify the CV, ST, physiological factors of metabolic fatigue, perceptual, and front crawl stroke efficiency parameters in competition swimmers covering distances of 100, 200, and 400 m.

Teixeira and Machado are with the Physical Education, State University of Maringá (UEM/UEL), Maringá, PR, Brazil. Mezzaroba is with the Metropolitan University Center of Maringá (UNIFAMMA), Maringá, PR, Brazil.

Machado (famachado_uem@hotmail.com) is corresponding author.
  • 1.

    Lanferdini FJ, Bini RR, Baroni BM, Klein KD, Carpes FP, Vaz MA. Low-level laser therapy improves performance and reduces fatigue in competitive cyclists. Int J Sports Physiol Perform. 2017;13(1):127. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Nampo FK, Cavalheri V, dos Santos Soares F, de Paula Ramos S, Camargo SA. Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci. 2016;31(9):19571970. PubMed ID: 27272746 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Fritsch CG, Dornelles MP, Severo-Silveira L, Marques VB, Rosso I de A, Baroni BM. Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers Med Sci. 2016;31(9):19351942. PubMed ID: 27655326 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci. 2015;30(1):5966. PubMed ID: 24957189 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buravlev EA, Zhidkova TV, Vladimirov YA, Osipov AN. Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock. Lasers Med Sci. 2013;28(3):785790. PubMed ID: 22797824 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Larkin KA, Martin JS, Zeanah EH, True JM, Braith RW, Borsa PA. Limb blood flow after class 4 laser therapy. J Athl Train. 2012;47(2):178183. PubMed ID: 22488283 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Peserico CS, Zagatto AM, Machado FA. Effects of endurance running training associated with photobiomodulation on 5-km performance and muscle soreness: a randomized placebo-controlled controlled trial. Front Physiol. 2019;10:211. PubMed ID: 30890962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mezzaroba PV, Pessôa Filho DM, Zagatto AM, Machado FA. LED session prior incremental step test enhance VO2maxin running. Lasers Med Sci. 2018;33(6):12631270. PubMed ID: 29546618 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Borg GAV. Escalas Para Dor e Esforço Percebidos. São Paulo: Manole; 2000.

  • 10.

    Guaraldo SA, Serra AJ, Amadio EM, et al. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise. Lasers Med Sci. 2016;31(5):833840. PubMed ID: 26861983 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Amadio EM, Serra AJ, Guaraldo SA, et al. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training. Lasers Med Sci. 2015;30(3):11271134. PubMed ID: 25647393 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zagatto AM, de Paula Ramos S, Nakamura FY, de Lira FS, Lopes-Martins RÁB, de Paiva Carvalho RL. Effects of low-level laser therapy on performance, inflammatory markers, and muscle damage in young water polo athletes: a double-blind, randomized, placebo-controlled study. Lasers Med Sci. 2016;31(3):511521. PubMed ID: 26873498 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Miranda EF, Vanin AA, Tomazoni SS, et al. Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train. 2016;51(2):129135. PubMed ID: 26942660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wakayoshi K, Ikuta K, Yoshida T, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol Occup Physiol. 1992;64(2):153157. PubMed ID: 1555562 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Toubekis AG, Tokmakidis SP. Metabolic responses at various intensities relative to critical swimming velocity. J Strength Cond Res. 2013;27(6):17311741. PubMed ID: 23449237 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mezzaroba PV, Papoti M, Machado FA. Comparison between Lactate Minimum and Critical Speed Throughout Childhood and Adolescence in Swimmers. Pediatr Exerc Sci. 2014;26(3):274280. PubMed ID: 25050986 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Vol 2. 1988. Hillsdale: Erlbaum. doi:10.1234/12345678

  • 18.

    Dellagrana RA, Rossato M, Sakugawa RL, Baroni BM, Diefenthaeler F. Photobiomodulation therapy on physiological and performance parameters during running tests. J Strength Cond Res. 2018;32(10):28072815. PubMed ID: 29481447 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    De Marchi T, Leal-Junior ECP, Bortoli C, Tomazoni SS, Lopes-Martins RAB, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231236. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Leal-Junior ECP, Lopes-Martins RÁB, Bjordal JM. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Braz J Phys Ther. 2019; 23(1):7175. PubMed ID: 30591412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. 2017; 33(1):181214. PubMed ID: 29090398 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Peserico CS, Garozi L, Machado FA. Does previous application of photobiomodulation using LEDs at different energy doses modifies the peak running velocity and physiological parameters? A randomized, crossover, double-blind, and placebo-controlled study [published online ahead of print August 28, 2020]. Photobiomodul Photomed Laser Surg. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Leahy MG, Summers MN, Peters CM, Molgat-Seon Y, Geary CM, Sheel AW. The mechanics of breathing during swimming. Med Sci Sports Exerc. 2019;51(7):14671476. PubMed ID: 30649105 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Graef FI, Kruel LFM. Heart rate and perceived exertion at aquatic environment: differences in relation to land environment and applications for exercise prescription—a review. Rev Bras Med do Esporte. 2006;12(4):221228. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Garzon M, Juneau M, Dupuy O, et al. Cardiovascular and hemodynamic responses on dryland vs immersed cycling. J Sci Med Sport. 2015;18(5):619623. PubMed ID: 25183667 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pendergast DR, Lundgren CEG. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol. 2009;106(1):276283. PubMed ID: 19036887 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Leal-Junior ECP, Lopes-Martins RÁB, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572577. PubMed ID: 19731300 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Caputo F, Lucas RDDL, Greco CC, Denadai BS. Características da braçada em diferentes distâncias no estilo crawl e correlações com a performanc. Rev Bras Cienc e Mov. 2000;8(3):713.

    • Search Google Scholar
    • Export Citation
  • 29.

    Chung H, Dai T, Sharma S, Huang Y-Y, Carroll J, Hamblin M. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516533. PubMed ID: 22045511 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Oliveira MFM, Caputo F, Dekerle J, Denadai BS, Greco CC. Stroking parameters during continuous and intermittent exercise in regional-level competitive swimmers. Int J Sports Med. 2012;33(9):696701. PubMed ID: 22592544 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dekerle J, Nesi X, Lefevre T, et al. Stroking parameters in front crawl swimming and maximal lactate steady state speed. Int J Sports Med. 2005;26(1):5358. PubMed ID: 15643535 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 370 370 93
Full Text Views 17 17 6
PDF Downloads 15 15 2