Quantifying Training Demands of a 2-Week In-Season Squash Microcycle

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To quantify the demands of specific on- and off-court sessions, using internal and external training load metrics, in elite squash. Methods: A total of 15 professional squash players (11 males and 4 females) wore a 100-Hz triaxial accelerometer/global positioning system unit and heart rate monitor during on-court “Group,” “Feeding,” “Ghosting,” “Matchplay,” and off-court “Conditioning” sessions across a 2-week in-season microcycle. Comparisons of absolute training load (total values) and relative intensity (per minute) were made between sessions for internal (session rating of perceived exertion, differential rating of perceived exertion, TRIMP) and external (Playerload, very high–intensity movements [>3.5 m·s−2]) metrics. Results: The Group sessions were the longest (79 [12] min), followed by Feeding (55 [15] min), Matchplay (46 [17] min), Conditioning (37 [9] min), and Ghosting (35 [6] min). Time >90% maximum heart rate was the lowest during Feeding (vs all others P < .05) but other sessions were not different (all P > .05). Relative Playerload during Conditioning (14.3 [3.3] arbitrary unit [a.u.] per min, all P < .05) was higher than Ghosting (7.5 [1.2] a.u./min) and Matchplay (6.9 [1.5] a.u./min), with no difference between these 2 sessions (P ≥ .999). Conditioning produced the highest Playerloads (519 [153] a.u., all P < .001), with the highest on-court Playerloads from Group (450 [94] a.u., all P < .001). The highest session rating of perceived exertion (all P < .001), Edward’s TRIMP (all P < .001), and TEAM-TRIMP (all P < .019) occurred during the Group sessions. Conclusions: Squash Matchplay does not systematically produce the highest training intensities and loads. Group sessions provide the highest training loads for many internal and external parameters and, therefore, play a central role within the training process. These findings facilitate planning or adjustment of intensity, volume, and frequency of sessions to achieve desirable physical outcomes.

James and Jones are with Inst Sukan Negara (National Sports Inst), Kuala Lumpur, Malaysia. Dhawan is with the EDGE10 Group Ltd, London, United Kingdom. Girard is with the School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia.

James (carlalexanderjames@gmail.com) is corresponding author.
  • 1.

    Lees A. Science and the major racket sports: a review. J Sports Sci. 2003;21(9):707732. PubMed ID: 14579868 doi:

  • 2.

    Farra S, James CA. Physiological predictors of an on-court, squash-specific fitness test. Paper presented at: European Congress of Sport Science, Dublin, Ireland; 2018.

    • Search Google Scholar
    • Export Citation
  • 3.

    Vučković G, Perš J, James N, Hughes M. Tactical use of the T area in squash by players of differing standard. J Sports Sci. 2009;27(8):863871. PubMed ID: 19551552 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Girard O, Millet GP. Neuromuscular fatigue in racquet sports. Phys Med Rehabil Clin N Am. 2009;20(1):161173. PubMed ID: 19084769 doi:

  • 5.

    Girard O, Chevalier R, Habrard M, Sciberras P, Hot P, Millet GP. Game analysis and energy requirements of elite squash. J Strength Cond Res. 2007;21(3):90914. PubMed ID: 17685699

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    James C, Tenllado Vallejo F, Kantebeen M, Farra S. Validity and reliability of an on-court fitness test for assessing and monitoring aerobic fitness in Squash. J Strength Cond Res. 2019;33(5):14001407. PubMed ID: 29461414 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones TW, Williams BK, Kilgallen C, Horobeanu C, Shillabeer BC, Murray A, Cardinale M. A review of the performance requirements of squash. Int J Sports Sci Coach. 2018;13(6):12231232. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Girard O, Sciberras P, Habrard M, Hot P, Chevalier R, Millet GP. Specific incremental test in elite squash players. Br J Sports Med. 2005;39(12):921926. PubMed ID: 16306500 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gibson N, Bell P, Clyne A, Lobban G, Aitken L, Gibbon K. Physical preparation for elite-level squash players: monitoring, assessment, and training practices for the strength and conditioning coach. Strength Cond J. 2019;41(3):5162. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hughes M, Franks IM. Dynamic patterns of movement of squash players of different standards in winning and losing rallies. Ergonomics. 1994;37(1):2329. PubMed ID: 8112279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Girard O, Micallef JP, Noual J, Millet GP. Alteration of neuromuscular function in squash. J Sci Med Sport. 2010;13(1):172177. PubMed ID: 19231287 doi:

  • 12.

    Gastin PB, Hunkin SL, Fahrner B, Robertson S. Deceleration, Acceleration, and impacts are strong contributors to muscle damage in professional Australian football. J Strength Cond Res. 2019;33(12):33743383. PubMed ID: 30694964 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macpherson TW, McLaren SJ, Gregson W, Lolli L, Drust B, Weston M. Using differential ratings of perceived exertion to assess agreement between coach and player perceptions of soccer training intensity: an exploratory investigation. J Sports Sci. 2019;37(24):27832788. PubMed ID: 31423944 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tessaro E, Williams JH. Validity and reliability of a 15 Hz GPS device for court-based sports movements. Sci Perform Sci Reports. 2018;1.

    • Search Google Scholar
    • Export Citation
  • 15.

    Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43(10):10251042. PubMed ID: 23812857 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Akubat I, Patel E, Barrett S, Abt G. Methods of monitoring the training and match load and their relationship to changes in fitness in professional youth soccer players. J Sports Sci. 2012;30(14):14731480. PubMed ID: 22857397 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Manzi V, Iellamo F, Impellizzeri F, D’Ottavio S, Castagna C. Relation between individualized training impulses and performance in distance runners. Med Sci Sports Exerc. 2009;41(11):20902096. PubMed ID: 19812506 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Arcos AL, Yanci J, Mendiguchia J, Gorostiaga EM. Rating of muscular and respiratory perceived exertion in professional soccer players. J Strength Cond Res. 2014;28(11):32803288. PubMed ID: 24845209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Weston M, Siegler J, Bahnert A, McBrien J, Lovell R. The application of differential ratings of perceived exertion to Australian Football League matches. J Sci Med Sport. 2015;18(6):704708. PubMed ID: 25241705 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48(3):641658. PubMed ID: 29288436 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Withers RT, Craig NP, Bourdon PC, Norton KI. Relative body fat and anthropometric prediction of body density of male athletes. Eur J Appl Physiol Occup Physiol. 1987;56(2):191200. PubMed ID: 3569225 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Withers RT, Whittingham NO, Norton KI, La Forgia J, Ellis MW, Crockett A. Relative body fat and anthropometric prediction of body density of female athletes. Eur J Appl Physiol Occup Physiol. 1987;56(2):169180. PubMed ID: 3569223 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Harper DJ, Carling C, Kiely J. High-intensity acceleration and deceleration demands in elite team sports competitive match play: a systematic review and meta-analysis of observational studies. Sports Med. 2019;49(12):19231947. PubMed ID: 31506901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Boyd L, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311321. PubMed ID: 21911857 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg E, Borg G. A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol. 2002;109(2):157175. doi:

  • 26.

    Edwards S. The Heart Rate Monitor Book. New York, NY: Polar Electro Oy.; 1993.

  • 27.

    Akubat I, Abt G. Intermittent exercise alters the heart rate—blood lactate relationship used for calculating the training impulse (TRIMP) in team sport players. J Sci Med Sport. 2011;14(3):249253. PubMed ID: 21237707 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rosenthal R. Meta-Analytic Procedures for Social Research. 1st ed. Newbury Park CA: SAGE Publications; 1991.

  • 29.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583592. PubMed ID: 16195007 doi:

  • 30.

    Malone S, Hughes B, Collins K, Akubat I. Methods of monitoring training load and their association with changes across fitness measures in hurling players. J Strength Cond Res. 2020;34(1):225234. PubMed ID: 29985218 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Abdullahi Y, Coetzee B, van den Berg L. Relationships between results of an internal and external match load determining method in male, singles badminton players. J Strength Cond Res. 2019;33(4):11111118. PubMed ID: 28682932 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Murray S, James N, Hughes MD, Perš J, Mandeljc R, Vučković G. Effects of rule changes on physical demands and shot characteristics of elite-standard men’s squash and implications for training. J Sports Sci. 2016;34(23):21702174. PubMed ID: 27494689 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hill-Haas SV, Dawson B, Impellizzeri FM, Coutts AJ. Physiology of small-sided games training in football. Sports Med. 2011;41(3):199220. PubMed ID: 21395363 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Duffield R, Murphy A, Kellet A, Reid M, Kellett A, Reid M. Recovery from repeated on-court tennis sessions: combining cold water immersion, compression and sleep recovery interventions. Int J Sport Physiol Perform. 2013;9(2):273282. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 636 636 148
Full Text Views 4 4 1
PDF Downloads 3 3 0