Should We Base Training Prescription on the Force–Velocity Profile? Exploratory Study of Its Between-Day Reliability and Differences Between Methods

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the differences in the force–velocity (F–v) profile assessed under unconstrained (ie, using free weights) and constrained (ie, on a Smith machine) vertical jumps, as well as to determine the between-day reliability. Methods: A total of 23 trained participants (18 [1] y) performed an incremental load squat jump test (with ∼35%, 45%, 60%, and 70% of the subjects’ body mass) on 2 different days using free weights and a Smith machine. Nine of these participants repeated the tests on 2 other days for an exploratory analysis of between-day reliability. F–v variables (ie, maximum theoretical force [F 0], velocity [v 0], and power, and the imbalance between the actual and the theoretically optimal F–v profile) were computed from jump height. Results: A poor agreement was observed between the F–v variables assessed under constrained and unconstrained conditions (intraclass correlation coefficient [ICC] < .50 for all). The height attained during each single jump performed under both constrained and unconstrained conditions showed an acceptable reliability (coefficient of variation < 10%, ICC > .70). The F–v variables computed under constrained conditions showed an overall good agreement (ICC = .75–.95 for all variables) and no significant differences between days (P > .05), but a high variability for v 0, the imbalance between the actual and the theoretically optimal F–v profile, and maximal theoretical power (coefficient of variation = 17.0%–27.4%). No between-day differences were observed for any F–v variable assessed under unconstrained conditions (P > .05), but all of the variables presented a low between-day reliability (coefficient of variation > 10% and ICC < .70 for all). Conclusions: F–v variables differed meaningfully when obtained from constrained and unconstrained loaded jumps, and most importantly seemed to present a low between-day reliability.

Valenzuela is with the Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain. Valenzuela, Sánchez-Martínez, Torrontegi, Vázquez-Carrión, and Montalvo are with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Haff is with the Human Performance Laboratory, Sport, Exercise, and Physiotherapy, University of Salford, Salford, United Kingdom; and the School of Exercise and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • 1.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(2):125146. doi:

  • 2.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements-altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313322. PubMed ID: 21775909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):29402945. PubMed ID: 18789803 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med. 2014;36(2):143149. PubMed ID: 25259590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: Imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed ID: 24227123 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:113. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jiménez-Reyes P, Samozino P, Morin JB. Optimized training for jumping performance using the force-velocity imbalance: individual adaptation kinetics. PLoS One. 2019;14(5):120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Escobar Álvarez JA, Fuentes García JP, Da Conceição FA, Jiménez-Reyes P. Individualized training based on force–velocity profiling during jumping in ballet dancers. Int J Sports Physiol Perform. 2019;15(6 ):788794. PubMed ID: 31715582 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Marcote-Pequeño R, García-Ramos A, Cuadrado-Peñafiel V, González-Hernández JM, Gómez , Jiménez-Reyes P. Association between the force–velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. Int J Sports Physiol Perform. 2019;14(2):209215. PubMed ID: 30040003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Janicijevic D, Knezevic OM, Mirkov DM, et al. Assessment of the force-velocity relationship during vertical jumps: influence of the starting position, analysis procedures and number of loads. Eur J Sport Sci. 2020;20(5):614623. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Janicijevic D, Knezevic O, Mirkov D, et al. The force-velocity relationship obtained during the squat jump exercise is meaningfully influenced by the initial knee angle. Sports Biomech. 2020:1–10. PubMed ID: 32223526 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Zabaloy S, Pareja-Blanco F, Giráldez JC, Rasmussen JI, González JG. Effects of individualised training programmes based on the force-velocity imbalance on physical performance in rugby players. Isokinet Exerc Sci. 2020;28(2):181190. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    García-Ramos A, Pérez-Castilla A, Morales-Artacho AJ, et al. Force-velocity relationship in the countermovement jump exercise assessed by different measurement methods. J Hum Kinet. 2019;67(1):3747. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Iglesias-Soler E, Mayo X, Rial-Vázquez J, et al. Reliability of force-velocity parameters obtained from linear and curvilinear regressions for the bench press and squat exercises. J Sports Sci. 2019;37(22):25962603. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cuk I, Markovic M, Nadeljkovic A, Ugarkovic D, Kukolj M, Jaric S. Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps Ivan. Eur J Appl Physiol. 2014;114(8):17031714. PubMed ID: 24819449 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Feeney D, Stanhope SJ, Kaminski TW, Machi A, Jaric S. Loaded vertical jumping: force-velocity relationship, work, and power. J Appl Biomech. 2016;32(2):120127. PubMed ID: 26398963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Laza-Cagigas R, Goss-Sampson M, Larumbe-Zabala E, Termkolli L, Naclerio F. Validity and reliability of a novel optoelectronic device to measure movement velocity, force and power during the back squat exercise. J Sports Sci. 2018;37(7):795802. PubMed ID: 30306839 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA. Validity and reliability of optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011;25(2):556560. PubMed ID: 20647944 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins W. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642. sportsci.org/2015/ValidRely.htm.

  • 22.

    Cormack SJ, Newton RU, McGulgan MR, Doyle TLA. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131144. PubMed ID: 19208922 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pérez-Castilla A, McMahon JJ, Comfort P, García-Ramos A. Assessment of loaded squat jump height with a free-weight barbell and Smith machine: comparison of the take-off velocity and flight time procedures. J Strength Cond Res. 2020;34(3):671677. PubMed ID: 28777251 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    García-Ramos A, Jaric S, Pérez-Castilla A, Padial P, Feriche B. Reliability and magnitude of mechanical variables assessed from unconstrained and constrained loaded countermovement jumps. Sports Biomech. 2017;16(4):514526. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rahmani A, Samozino P, Morin J-B, Morel B. A simple method for assessing upper limb force-velocity profile in bench press. Int J Sports Physiol Perform. 2017;13(2):200207. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Samozino P, Morin JB, Hintzy F, Belli A. Jumping ability: a theoretical integrative approach. J Theor Biol. 2010;264(1):1118. PubMed ID: doi:20109471

  • 27.

    Alcazar J, Pareja-Blanco F, Rodriguez-Lopez C, et al. Comparison of linear, hyperbolic and double-hyperbolic models to assess the force-velocity relationship in multi-joint exercises. Eur J Sport Sci. 1–11. PubMed ID: 32255757 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Farris DJ, Lichtwark GA, Brown NAT, Cresswell AG. Deconstructing the power resistance relationship for squats: a joint-level analysis. Scand J Med Sci Sports. 2016;26(7):774781. PubMed ID: 26103786 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Alcazar J, Rodriguez-Lopez C, Ara I, et al. The force-velocity relationship in older people: reliability and validity of a systematic procedure. Int J Sports Med. 2017;38(14):10971104. PubMed ID: 29126339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rakovic E, Paulsen G, Helland C, Eriksrud O, Haugen T. The effect of individualised sprint training in elite female team sport athletes: a pilot study. J Sports Sci. 2018;36(24):28022808. PubMed ID: 29741443 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jiménez-Reyes P, Samozino P, García-Ramos A, Cuadrado-Peñafiel V, Brughelli M, Morin JB. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ. 2018;2018(11):118. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 739 739 192
Full Text Views 31 31 9
PDF Downloads 22 22 6