Time Spent Near V˙O2max During Different Cycling Self-Paced Interval Training Protocols

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Cyclists may increase exercise intensity by prolonging exercise duration and/or shortening the recovery period during self-paced interval training, which could impact the time spent near V˙O2max. Thus, the main objective of this study was to compare the time spent near V˙O2max during 4 different self-paced interval training sessions. Methods: After an incremental test, 11 cyclists (mean [SD]: age = 34.4 [6.2] y; V˙O2max=55.7[7.4]mL·kg1·min1) performed in a randomized order 4 self-paced interval training sessions characterized by a work–recovery ratio of 4:1 or 2:1. Sessions comprised 4 repetitions of 4 minutes of cycling with 1 minute (4/1) or 2 minutes (4/2) of active recovery or 8 minutes of cycling with 2 minutes (8/2) or 4 minutes (8/4) of active recovery. Time spent at 90% to 94% (t90V˙O2max), ≥95% (t95V˙O2max), and 90% to 100% V˙O2max (tV˙O2max) was analyzed in absolute terms and relative to the total work duration. Power output, heart rate, blood lactate, and rating of perceived exertion were compared. Results: The 8/4 session provided higher absolute tV˙O2max and t95V˙O2max than 8/2 (P = .015 and .029) and 4/1 (P = .002 and .047). The 4/2 protocol elicited higher relative tV˙O2max (47.7% [26.9%]) and t95V˙O2max (23.5% [22.7%]) than 4/1 (P = .015 and .028) and 8/2 (P < .01). Session 4/2 (275 [23] W) elicited greater mean power output (P < .01) than 4/1 (261 [27] W), 8/4 (250 [25] W), and 8/2 (234 [23] W). Conclusions: Self-paced interval training composed of 4-minute and 8-minute work periods efficiently elicit tV˙O2max, but protocols with a work–recovery ratio of 2:1 (ie, 4/2 and 8/4) could be prioritized to maximize tV˙O2max.

The authors are with the Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil.

Dall’ Agnol (cristianodallagnol@hotmail.com) is corresponding author.
  • 1.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Thevenet D, Tardieu M, Zouhal H, Jacob C, Abderrahman BA, Prioux J. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 2007;102(1):1926. PubMed ID: 17851682 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37(9):16011607. PubMed ID: 16177614 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ronnestad BR, Ellefsen S, Nygaard H, et al. . Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand J Med Sci Sports. 2014;24(2):327335. PubMed ID: 23134196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sandbakk O, Sandbakk SB, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27(7):19741980. PubMed ID: 23037620 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seiler S, Joranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):7483. PubMed ID: 21812820 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14(5):318325. PubMed ID: 15387806 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wen D, Utesch T, Wu J, et al. . Effects of different protocols of high intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. J Sci Med Sport. 2019;22(8):941947. PubMed ID: 30733142 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ronnestad BR, Moen M, Gunnerod S, Ofsteng S. Adding vibration to high-intensity intervals increase time at high oxygen uptake in well-trained cyclists. Scand J Med Sci Sports. 2018;28(12):24732480. PubMed ID: 30113750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Schoenmakers P, Reed KE. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions. J Sci Med Sport. 2019;22(4):462466. PubMed ID: 30297216 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Smilios I, Myrkos A, Zafeiridis A, Toubekis A, Spassis A, Tokmakidis SP. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics, and blood lactate. J Strength Cond Res. 2018;32(8):21832189. PubMed ID: 28301436 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sylta O, Tonnessen E, Hammarstrom D, et al. . The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):21652174. PubMed ID: 27300278 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Robergs RA, Dwyer D, Astorino T. Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med. 2010;40(2):95111. PubMed ID: 20092364 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Keiller D, Gordon D. Confirming Maximal oxygen uptake: is heart rate the answer? Int J Sports Med. 2018;39(3):198203. PubMed ID: 29365339 doi:

  • 18.

    Seiler S, Sylta O. How does interval-training prescription affect physiological and perceptual responses? Int J Sports Physiol Perform. 2017;12(Suppl):S280S286. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 20.

    Foster C, Florhaug JA, Franklin J, et al. . A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    DiMenna FJ, Wilkerson DP, Burnley M, Jones AM. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline. J Appl Physiol (1985). 2008;105(2):538546. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hill DW, Poole DC, Smith JC. The relationship between power and the time to achieve.VO2max. Med Sci Sports Exerc. 2002;34(4):709714. PubMed ID: 11932583

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):10191028. PubMed ID: 18027991 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Midgley AW, McNaughton LR, Carroll S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Appl Physiol Nutr Metab. 2006;31(5):541548. PubMed ID: 17111008 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4):621627. PubMed ID: 11283439 doi:

  • 27.

    Possamai LT, Campos FS, Salvador P, et al. . Similar maximal oxygen uptake assessment from a step cycling incremental test and verification tests on the same or different day. Appl Physiol Nutr Metab. 2020;45(4):357361. PubMed ID: 31491339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 832 832 72
Full Text Views 27 27 1
PDF Downloads 30 30 0