Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate and explore the relationships between physiological and perceptual recovery and stress responses to elite netball tournament workloads. Methods: Nine elite female netballers were observed across a 3-day (T1–3), 4-match tournament. Participants provided salivary samples for cortisol and alpha-amylase analysis, completed the Short Recovery Stress Scale (SRSS), and reported session ratings of perceived exertion. Inertial measurement units and heart-rate monitors determined player load, changes of direction (COD), summated heart-rate zones, and jumps. Results: Analysis revealed 6 significant SRSS time effects: (1) decreased recovery markers of physical performance (P = .042), emotional balance (P = .034), and overall recovery (P = .001) and (2) increased perceptual stress markers of muscular stress (P = .001), negative emotional state (P = .026), and overall stress (P = .010). Salivary cortisol decreased over the tournament (T1–3) before progressively increasing posttournament with greater salivary samples for cortisol on T+2 compared with T3 (P = .014, ES = −1.29; −2.24 to −0.22]) and T+1 (P = .031, ES = −1.54; −2.51 to −0.42). SRSS overall recovery moderately negatively correlated with COD (r = −.41, P = .028) and session ratings of perceived exertion (r = −.40, P = .034). Cumulative workload did not relate to posttournament perceptual or salivary responses. Percentage change in salivary variables related (P < .05) to total player load, total COD, and overall recovery across specific cumulative time periods. Conclusions: During and after an elite netball tournament, athletes indicated increased perceptual stress and lack of recovery. The SRSS is a valuable tool for recovery–stress monitoring in elite tournament netball. It is recommended that practitioners monitor COD due to its negative influence on perceived overall recovery.

Russell and Simpson are with the School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia. Russell is with the Queensland Academy of Sport, Nathan, QLD, Australia. Simpson is with Netball Queensland, Nathan, QLD, Australia. Evans, Coulter, and Kelly are with the School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

Russell (suzanna.russell@uqconnect.edu.au) is corresponding author.
  • 1.

    Simpson MJ, Jenkins DG, Leveritt MD, Kelly VG. Physical profiles of elite, sub-elite, regional and age-group netballers. J Sports Sci. 2019;37(11):12121219. PubMed ID: 30558478 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fox A, Spittle M, Otago L, Saunders N. Activity profiles of the Australian female netball team players during international competition: implications for training practice. J Sports Sci. 2013;31(14):15881595. PubMed ID: 23672529 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chandler PT, Pinder SJ, Curran JD, Gabbett TJ. Physical demands of training and competition in collegiate netball players. J Strength Cond Res. 2014;28(10):27322737. PubMed ID: 24983848 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bailey JA, Gastin PB, Mackey L, Dwyer DB. The player load associated with typical activities in elite netball. Int J Sports Physiol Perform. 2017;12(9):12181223. PubMed ID: 28182504 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kelly V, Gabbett T. Neuromuscular and perceptual fatigue responses to an elite level netball match. J Aust Strength Cond. 2013;21(suppl 1):2428.

    • Search Google Scholar
    • Export Citation
  • 6.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and Performance in Sport: consensus Statement. Int J Sports Physiol Perform. 2018;13(2):240245. PubMed ID: 29345524 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Shearer DA, Sparkes W, Northeast J, Cunningham DJ, Cook CJ, Kilduff LP. Measuring recovery: an adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. J Sci Med Sport. 2017;20(5):512517. PubMed ID: 27751660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gescheit DT, Cormack SJ, Reid M, Duffield R. Consecutive days of prolonged tennis match play: performance, physical, and perceptual responses in trained players. Int J Sports Physiol Perform. 2015;10(7):913920. PubMed ID: 25710259 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Birdsey LP, Weston M, Russell M, Johnston M, Cook CJ, Kilduff LP. Neuromuscular, physiological and perceptual responses to an elite netball tournament. J Sports Sci. 2019;37(19):21692174. PubMed ID: 31159643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Simpson MJ, Jenkins DG, Scanlan AT, Kelly VG. Relationships between external-and internal-workload variables in an elite female netball team and between playing positions. Int J Sports Physiol Perf. 2020;15(6):841846. PubMed ID: 32163926 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Moreira A, Aoki MS, Franchini E, da Silva Machado DG, Paludo AC, Okano AH. Mental fatigue impairs technical performance and alters neuroendocrine and autonomic responses in elite young basketball players. Physiol Behav. 2018;196:112118. PubMed ID: 30172721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chiodo S, Tessitore A, Cortis C, et al. Stress-related hormonal and psychological changes to official youth Taekwondo competitions. Scand J Med Sci Sports. 2011;21(1):111119. PubMed ID: 20030779 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Saw AE, Kellmann M, Main LC, Gastin PB. Athlete self-report measures in research and practice: considerations for the discerning reader and fastidious practitioner. Int J Sports Physiol Perf. 2017;12(suppl 2):S2127S2135. PubMed ID: 27834546 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kellmann M, Kölling S. Recovery and Stress in Sport: A Manual for Testing and Assessment. Abingdon, UK: Routledge; 2019.

  • 15.

    Nässi A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Development of two short measures for recovery and stress in sport. Eur J Sport Sci. 2017;17(7):894903. PubMed ID: 28463598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kölling S, Schaffran P, Bibbey A, et al. Validation of the Acute Recovery and Stress Scale (ARSS) and the Short Recovery and Stress Scale (SRSS) in three English-speaking regions. J Sports Sci. 2020;38(2):130139. PubMed ID: 31696778 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perf. 2011;6(3):311321. PubMed ID: 21911857 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ashton RE, Twist C. Number of directional changes alters the physiological, perceptual, and neuromuscular responses of netball players during intermittent shuttle running. J Strength Cond Res. 2015;29(10):27312737. PubMed ID: 26402473 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39(9):779795. PubMed ID: 19691366 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Krustrup P, Mohr M, Amstrup T, et al. The yo-yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697705. PubMed ID: 12673156 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Edwards S. High performance training and racing. In: Edwards S, ed. The Heart Rate Monitor Book. Sacramento, CA: Feet Fleet Press; 1993:113123.

    • Search Google Scholar
    • Export Citation
  • 22.

    Hayes LD, Sculthorpe N, Cunniffe B, Grace F. Salivary testosterone and cortisol measurement in sports medicine: a narrative review and user’s guide for researchers and practitioners. Int J Sports Med. 2016;37(13):10071018. PubMed ID: 27676150 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):17631768. PubMed ID: 29481436 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ramirez-Lopez C, Till K, Sawczuk T, et al. A multi-nation examination of the fatigue and recovery time course during the inaugural Under-18 Six Nations rugby union competition. J Sports Sci. 2020;38(6):644651. PubMed ID: 32009514 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Twist C, Highton J, Daniels M, Mill N, Close G. Player responses to match and training demands during an intensified fixture schedule in professional rugby league: a case study. Int J Sports Physiol Perform. 2017;12(8):10931099. PubMed ID: 28095070 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Doeven SH, Brink MS, Huijgen BCH, de Jong J, Lemmink K. High match load’s relation to decreased well-being during an elite women’s rugby sevens tournament. Int J Sports Physiol Perform. 2019;14(8):10361042. PubMed ID: 30676136 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    West DJ, Cook CJ, Stokes KA, et al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17(6):688692. PubMed ID: 24332752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Elloumi M, Maso F, Michaux O, Robert A, Lac G. Behaviour of saliva cortisol [C], testosterone [T] and the T/C ratio during a rugby match and during the post-competition recovery days. Eur J Appl Physiol. 2003;90(1–2):2328. PubMed ID: 12783234 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Montgomery PG, Pyne DB, Hopkins WG, Dorman JC, Cook K, Minahan CL. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J Sports Sci. 2008;26(11):11351145. PubMed ID: 18608847 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    van Paridon KN, Timmis MA, Nevison CM, Bristow M. The anticipatory stress response to sport competition: a systematic review with meta-analysis of cortisol reactivity. BMJ Open Sport Exerc Med. 2017;3(1):e000261. PubMed ID: 29177073 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kivlighan KT, Granger DA. Salivary alpha-amylase response to competition: relation to gender, previous experience, and attitudes. Psychoneuroendocrinology. 2006;31(6):703714. PubMed ID: 16624493 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Davidson A, Trewartha G. Understanding the physiological demands of netball: a time-motion investigation. Int J Perform Anal Sport. 2017;8(3):117. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Waldron M, Highton J, Daniels M, Twist C. Preliminary evidence of transient fatigue and pacing during interchanges in rugby league. Int J Sports Physiol Perform. 2013;8(2):157164. PubMed ID: 22902435 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Mooney M, Cormack S, O’Brien B, Coutts AJ. Do physical capacity and interchange rest periods influence match exercise-intensity profile in Australian football? Int J Sports Physiol Perform. 2013;8(2):165172. PubMed ID: 23428488 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Malone S, Hughes B, Mangan S, Roe M, Collins K. Factors that influence session-rating of perceived exertion in elite gaelic football. J Strength Cond Res. 2020;34(4):11761183. PubMed ID: 32213785 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Lacome M, Carling C, Hager JP, Dine G, Piscione J. Workload, Fatigue, and muscle damage in an under-20 rugby union team over an intensified international tournament. Int J Sports Physiol Perform. 2018;13(8):10591066. PubMed ID: 29431537 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 656 656 89
Full Text Views 25 25 7
PDF Downloads 21 21 3