Longitudinal Relationships Between Maturation, Technical Efficiency, and Performance in Age-Group Swimmers: Improving Swimmer Evaluation

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The study aimed to (1) accurately examine longitudinal relationships between maturity status and both technical skill indices and performance in Australian male (N = 64) age-group Front-crawl swimmers (10–15 y) and (2) determine whether individual differences in maturation influenced relationships between technical skill level and swimming performance. Methods: A repeated-measures design was used to assess maturity status and performance on 200-m Front-crawl trial across 2 competition seasons (2018–2020). Assessments were made on 3 to 5 occasions (median = 3) separated by approximately 4 months. Average horizontal velocity and stroke frequency were used to calculate technical skill indices, specifically stroke index, and arm propelling efficiency. Relationships between variables were assessed using linear mixed models, identifying fixed, and random effect estimates. Results: Curvilinear trends best described significant longitudinal relationships between maturity status with horizontal velocity (F = 10.33 [1, 233.77]; P = .002) and stroke index (F = 5.55 [1, 217.9]; P = .02) during 200-m Front-crawl trials. Maturity status was not significantly related to arm propelling efficiency (P = .08). However, arm propelling efficiency was an independent predictor of Front-crawl velocity (F = 55.89 [1, 210.45]; P < .001). Conclusions: Maturity status predicted assessment of swimmer technical skill (stroke index) and swimming performance. However, technical skill accessed via arm propelling efficiency was independent of maturation and was predictive of performance. Maturity status influences performance evaluation based on technical skill and velocity. Findings highlight the need to account for maturation and technical skill in age-group swimmers to better inform swimmer evaluation.

Abbott, Yamauchi, Halaki, Castiglioni, and Cobley are with the Discipline of Exercise & Sport Science, School of Health Sciences, Faculty of Medicine & Health, The University of Sydney, Lidcombe, NSW, Australia. Salter is with Swimming Australia Ltd, Sunnybank, QLD, Australia.

Abbott (sabb5352@uni.sydney.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (pdf 8 KB)
    • Supplementary Material 2 (pdf 142 KB)
    • Supplementary Material 3 (pdf 187 KB)
  • 1.

    Winand M. The global sporting arms race. An international comparative study on sports policy factors leading to international sporting success (SPLISS). Eur Sport Manag Q. 2010;10(5):613615. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gullich A, Cobley, S. On the efficacy of talent identification and talent development programmes. In: Baker J, Cobley S, Schorer J, Wattie N, eds. Routledge Handbook of Talent Identification and Development in Sport. Abingdon: Routledge; 2017:8098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Vaeyens R, Lenoir M, Williams AM, Philippaerts RM. Talent identification and development programmes in sport: current models and future directions. Sports Med. 2008;38(9):703714. PubMed ID: 18712939 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cobley S, Till, K. Longitudinal studies of athlete development: their importance, methods and future considerations. In: Baker J, Cobley S, Schorer J, Wattie N, eds. Routledge Handbook of Talent Identification and Development in Sport. Abingdon: Routledge; 2017:250268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Abbott A, Button C, Pepping GJ, Collins D. Unnatural selection: talent identification and development in sport. Nonlinear Dynamics Psychol Life Sci. 2005;9(1):6188. PubMed ID: 15629068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rongen F, McKenna J, Cobley S, Till K. Are youth sport talent identification and development systems necessary and healthy? Sports Med. 2018;4(1):18.

    • Search Google Scholar
    • Export Citation
  • 7.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity. Champaign, IL: Human Kinetics; 2004.

  • 8.

    Philippaerts RM, Vaeyens R, Janssens M, et al. The relationship between peak height velocity and physical performance in youth soccer players. J Sports Sci. 2006;24(3):221230. PubMed ID: 16368632 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barnes HV. Physical growth and development during puberty. Med Clin North Am. 1975;59(6):13051317. PubMed ID: 1186345 doi:

  • 10.

    Towlson C, Cobley S, Parkin G, Lovell R. When does the influence of maturation on anthropometric and physical fitness characteristics increase and subside? Scand J Med Sci Sports. 2018;28(8):19461955. PubMed ID: 29668045 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Armstrong N, Welsman J. Development of peak oxygen uptake from 11–16 years determined using both treadmill and cycle ergometry. Eur J Appl Physiol. 2019;119(3):801812. PubMed ID: 30627827 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Morais JE, Silva AJ, Garrido ND, Marinho DA, Barbosa TM. The transfer of strength and power into the stroke biomechanics of young swimmers over a 34-week period. Eur J Sport Sci. 2018;18(6):787795. PubMed ID: 29577827 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sammoud S, Nevill AM, Negra Y, Bouguezzi R, Helmi C, Hachana Y. Key somatic variables in young backstroke swimmers. J Sports Sci. 2019;37(10):11621167. PubMed ID: 30430909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Zacca R, Azevedo R, Ramos VR Jr, et al. Biophysical follow-up of age-group swimmers during a traditional three-peak preparation program. J Strength Cond Res. 2019;34(9):25852595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Cobley S, Abbott S, Dogramaci S, et al. Transient relative age effects across annual age groups in national level Australian swimming. J Sci Med Sport. 2018;21(8):839845. PubMed ID: 29398369 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Baxter-Jones ADG, Barbour-Tuck EN, Dale D, et al. The role of growth and maturation during adolescence on team selection and short-term sports participation. Ann Hum Biol. 2020;47(4):316323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Morais JE, Marques MC, Rodríguez-Rosell D, Barbosa TM, Marinho DA. Relationship between thrust, anthropometrics, and dry-land strength in a national junior swimming team. Phys Sports Med. 2020;48(3):304311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport. 2010;13(2):262269. PubMed ID: 19409842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cortesi M, Gatta G, Michielon G, Di Michele R, Bartolomei S, Scurati R. Passive drag in young swimmers: effects of body composition, morphology and gliding position. Int J Environ Res Public Health. 2020;17(6):2002. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Deschodt VJ, Arsac LM, Rouard AH. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur J Appl Physiol Occup Physiol. 1999;80(3):192199. PubMed ID: 10453920 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zamparo P. Effects of age and gender on the propelling efficiency of the arm stroke. Eur J Appl Physiol. 2006;97(1):5258. PubMed ID: 16468063 doi:

  • 22.

    Morais JE, Silva AJ, Marinho DA, Lopes VP, Barbosa TM. Determinant factors of long-term performance development in young swimmers. Int J Sports Physiol Perform. 2017;12(2):198205. PubMed ID: 27196954 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zacca R, Azevedo R, Chainok P, et al. Monitoring age-group swimmers over a training macrocycle: energetics, technique, and anthropometrics. J Strength Cond Res. 2020;34(3):818827. PubMed ID: 30113917 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Stewart AD, Marfell-Jone M, Olds T, Hans De Ridder J. International Standards for Anthropometric Assessment. New Zealand: ISAK: The International Society for the Advancement of Kinanthropometry; 2011.

    • Search Google Scholar
    • Export Citation
  • 25.

    Loebbecke A, Mittal R. Comparative analysis of thrust production for distinct arm-pull styles in competitive swimming. J Biomech Eng. 2012;134(7):14. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Moore SA, McKay HA, Macdonald H, et al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):17551764. PubMed ID: 25423445 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    McGowan CJ, Pyne DB, Thompson KG, Raglin JS, Osborne M, Rattray B. Elite sprint swimming performance is enhanced by completion of additional warm-up activities. J Sports Sci. 2017;35(15):14931499. PubMed ID: 27631544 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175182. PubMed ID: 22634967 doi:

  • 30.

    Zacca R, Toubekis A, Freitas L, et al. Effects of detraining in age-group swimmers performance, energetics and kinematics. J Sports Sci. 2019;37(13):14901498. PubMed ID: 30714478 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Field A. Discovering Statistics Using IBM SPSS Statistics. 5th ed. Thousand Oaks: SAGE Publications; 2018.

  • 32.

    Lee PH. Is a cutoff of 10% appropriate for the change-in-estimate criterion of confounder identification? J Epidemiol. 2014;24(2):161167. PubMed ID: 24317343 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Singer J, Willett J. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford, United Kingdom: Oxford University Press; 2003. Accessed April 20, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Cobley S, Abbott S, Eisenhuth J, Salter J, McGregor D, Romann M. Removing relative age effects from youth swimming: the development and testing of corrective adjustment procedures. J Sci Med Sport. 2019;22(6):735740. PubMed ID: 30665755 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 642 642 90
Full Text Views 17 17 5
PDF Downloads 10 10 2