Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Concentric hip and eccentric knee joint mechanics affect sprint performance. Although the biarticular hamstrings combine these capacities, empirical links between swing phase mechanics and corresponding isokinetic outcome parameters are deficient. This explorative study aimed (1) to explain the variance of sprint velocity, (2) to compare maximal sprints with isokinetic tests, (3) to associate swing phase mechanics with isokinetic parameters, and (4) to quantify the relation between knee and hip joint swing phase mechanics. Methods: A total of 22 sprinters (age = 22 y, height = 1.81 m, weight = 77 kg) performed sprints and eccentric knee flexor and concentric knee extensor tests. All exercises were captured by 10 (sprints) and 4 (isokinetics) cameras. Lower-limb muscle balance was assessed by the dynamic control ratio at the equilibrium point. Results: The sprint velocity (9.79 [0.49] m/s) was best predicted by the maximal knee extension velocity, hip mean power (both swing phase parameters), and isokinetic peak moment of concentric quadriceps exercise (R2 = 60%). The moment of the dynamic control ratio at the equilibrium point (R2 = 39%) was the isokinetic parameter with the highest predictive power itself. Knee and hip joint mechanics affected each other during sprinting. They were significantly associated with isokinetic parameters of eccentric hamstring tests, as well as moments and angles of the dynamic control ratio at the equilibrium point, but restrictedly with concentric quadriceps exercise. The maximal sprints imposed considerably higher loads than isokinetic tests (eg, 13-fold eccentric knee joint peak power). Conclusions: Fast sprinters demonstrated distinctive knee and hip mechanics in the late swing phase, as well as strong eccentric hamstrings, with a clear association to the musculoarticular requirements of the swing phase in sprinting. The transferability of isokinetic knee strength data to sprinting is limited inter alia due to different hip joint configurations. However, isokinetic tests quantify specific sprint-related muscular prerequisites and constitute a useful diagnostic tool due to their predicting value to sprint performance.

Alt is with the Dept of Biomechanics, Performance Analysis and Strength & Conditioning, Olympic Training and Testing Center Westphalia, Dortmund, Germany. Alt, Severin, Nodler, Knicker, and Strüder are with the Inst of Movement and Neuroscience, and Komnik, Benker, and Brüggemann, the Inst of Biomechanics and Orthopedics, German Sport University, Cologne, Germany. Knicker and Strüder are also with the Research Center for Elite Sports, Momentum, Cologne, Germany.

Alt (tobias.alt@osp-westfalen.de) is corresponding author.
  • 1.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. PubMed ID: 25640466 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nagano Y, Higashihara A, Takahashi K, et al. Mechanics of the muscles crossing the hip joint during sprint running. J Sports Sci. 2014;32(18):17221728. PubMed ID: 24840031 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Haugen T, Seiler S, Sandbakk O, et al. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sports Med Open. 2019;5(1):44. PubMed ID: 31754845 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Higashihara A, Nagano Y, Ono T, et al. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J Sports Sci. 2018;36(12):13131318. PubMed ID: 28873030 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ishoi L, Aagaard P, Nielsen MF, et al. The influence of hamstring muscle peak torque and rate of torque development for sprinting performance in football players: a cross-sectional study. Int J Sports Physiol Perform. 2019;14(5):665673. PubMed ID: 30427242 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed ID: 26733889 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Miyashiro K, Nagahara R, Yamamoto K, et al. Kinematics of maximal speed sprinting with different running speed, leg length, and step characteristics. Front Sports Act Living. 2019:1:37. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Yu J, Sun Y, Yang C, et al. Biomechanical insights into differences between the mid-acceleration and maximum velocity phases of sprinting. J Strength Cond Res. 2016;30(7):19061916. PubMed ID: 27331914 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schache AG, Blanch PD, Dorn TW, et al. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):12601271. PubMed ID: 21131859 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johnson MD, Buckley JG. Muscle power patterns in the mid-acceleration phase of sprinting. J Sports Sci. 2001;19(4):263272. PubMed ID: 11311024 doi:

  • 11.

    Sun Y, Wei S, Liu Z, et al. How joint torques affect hamstring injury risk in sprinting swing-stance transition. Med Sci Sports Exerc. 2015;47(2):373380. PubMed ID: 24911288 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lee MJ, Reid SL, Elliott BC, et al. Running biomechanics and lower limb strength associated with prior hamstring injury. Med Sci Sports Exerc. 2009;41(10):19421951. PubMed ID: 19727017 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):35553562. PubMed ID: 17659291 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chumanov ES, Schache AG, Heiderscheit BC, et al. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90. PubMed ID: 21727236 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Schache AG, Kim HJ, Morgan DL, et al. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture. 2010;32(1):136140. PubMed ID: 20395142 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alexander MJ. The relationship between muscle strength and sprint kinematics in elite sprinters. Can J Sport Sci. 1989;14(3):14857. PubMed ID: 2684376

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dowson MN, Nevill ME, Lakomy HK, et al. Modelling the relationship between isokinetic muscle strength and sprint running performance. J Sports Sci. 1998;16(3):257265. PubMed ID: 9596360 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sugiura Y, Saito T, Sakuraba K, et al. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther. 2008;38(8):457464. PubMed ID: 18678956 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Alt T, Knicker AJ, Strüder HK. The effects of angular velocity and training status on the Dynamic Control Equilibrium. Sports Med Int Open. 2017;1(1):E23E29. PubMed ID: 30539082 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Alt T, Knicker AJ, Strüder HK. The dynamic control ratio at the equilibrium point (DCRe): introducing relative and absolute reliability scores. J Sports Sci. 2017;35(7):688693. PubMed ID: 27214243 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vardaxis V, Hoshizaki TB. Power patterns of the leg during the recovery phase of the sprinting stride for advanced and intermediate sprinters. Int J Sport Biomech. 1989;5(3):332349. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Alt T, Knicker AJ, Strüder HK. Factors influencing the reproducibility of isokinetic knee flexion and extension test findings. Isokinet Exerc Sci. 2014;22(4):333342. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Alt T, Knicker AJ, Severin J, et al. Peak power assessment of isokinetic knee flexor and extensor tests—Pitfalls of a dynamometer-based assessment. Meas Phys Educ Exerc Sci. 2020;24(2):123128. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Alt T, Knicker AJ, Struder HK. Assessing thigh muscle balance of male athletes with special emphasis on eccentric hamstring strength. Physician Sportsmed. 2020;48(3):327–334. PubMed ID: 31847683 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Worrell TW, Denegar CR, Armstrong SL, et al. Effect of body position on hamstring muscle group average torque. J Orthop Sports Phys Ther. 1990;11(10):449452. PubMed ID: 18796892 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lund ME, Andersen MS, de Zee M, et al. Scaling of musculoskeletal models from static and dynamic trials. Int Biomech. 2015;2(1):111. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hanavan EP. A Mathematical Model of the Human Body. AMRL-TR-64-102, AD-608-463. Ohio:Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base. 1964.

    • Search Google Scholar
    • Export Citation
  • 28.

    Alt T, Severin J, Nodler YT, et al. Kinematic analysis of isokinetic knee flexor and extensor tests Isokinet Exerc Sci. 2018;26(1):18. doi:

  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.

  • 30.

    Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences. Boston: Houghton Mifflin; 2003.

All Time Past Year Past 30 Days
Abstract Views 506 506 203
Full Text Views 16 16 5
PDF Downloads 9 9 2