Cooling During Endurance Cycling in the Heat: Blunted Core Temperature but Not Inflammatory Responses

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study assessed the effects of cooling during endurance cycling (percooling) on changes in core body temperature (Tcore), inflammatory, and metabolic responses. Methods: A total of 12 male cyclists (peak oxygen uptake 60 [4] mL·kg−1·min−1) completed a 60-minute constant workload trial (55% of peak power output and ambient temperature 30.4°C [0.6°C]) in a randomized order both with (ICE) and without (CON) an ice vest. An ingestible capsule was used to measure Tcore. Blood samples were collected immediately before and after each trial to determine concentrations of blood lactate, serum cortisol, interleukin-6, and reactive oxygen and nitrogen species. Results: Tcore increased statistically (P < .001) both in CON (7.0% [1.4%], effect size [ES] = 6.3) and ICE (5.1% [1.1%], ES = 5.7). The increase in CON was statistically larger compared with ICE (P = .006, ES = 1.4). Concentrations of blood lactate (CON: 163% [63%], ES = 1.3; ICE: 149% [91%], ES = 1.3), cortisol (CON: 138% [123%], ES = 1.7; ICE: 81% [102%], ES = 1.0), and interleukin-6 (CON: 661% [324%], ES = 2.1; ICE: 624% [368%], ES = 1.2) statistically increased in both conditions (P < .01) to a similar extent. In addition, reactive oxygen and nitrogen species statistically decreased in both conditions (CON: −19.2% [14.9%], P = .002, ES = 0.9; ICE: −15.1% [16.5%], P = .02, ES = 0.9). No correlations were found between the changes of Tcore and blood parameters across the conditions. Conclusions: Despite attenuated Tcore, similar inflammatory and metabolic responses were observed. Our findings suggest percooling to be a promising strategy to attenuate thermal strain without compromising physiological function.

The authors are with the Dept Molecular and Cellular Sports Medicine, Inst of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.

Schumann (m.schumann@dshs-koeln.de) is corresponding author.
  • 1.

    González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):4553. PubMed ID: 17855754 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4(2):657689. PubMed ID: 24715563 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Junge N, Jørgensen R, Flouris AD, Nybo L. Prolonged self-paced exercise in the heat–environmental factors affecting performance. Temperature. 2016;3(4):539548. PubMed ID: 28090557 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Br J Sports Med. 2015;49(18):11641173. PubMed ID: 26069301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bongers CCWG, Hopman MTE, Eijsvogels TMH. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature. 2017;4(1):6078. PubMed ID: 28349095 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Douzi W, Dugué B, Vinches L, et al. Cooling during exercise enhances performances, but the cooled body areas matter: a systematic review with meta-analyses. Scand J Med Sci Sport. 2019;29(11):16601676. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Banfi G, Melegati G, Barassi A, et al. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Therm Biol. 2009;34(2):5559. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Crystal NJ, Townson DH, Cook SB, Laroche DP. Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise. Eur J Appl Physiol. 2013;113(10):25772586. PubMed ID: 23873339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lee BJ, Clarke ND, Hankey J, Thake CD. Whole body precooling attenuates the extracellular HSP72, IL-6 and IL-10 responses after an acute bout of running in the heat. J Sports Sci. 2018;36(4):41421. PubMed ID: 28376678 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Peake, JM, Markworth, JF, Nosaka, K, Raastad, T, Wadley, GD, Coffey, VG. Modulating exercise-induced hormesis: does less equal more? J Appl Physiol. 2015;119(3):172189. PubMed ID: 25977451 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):3344. PubMed ID: 18177723 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Viru M, Litvinova L, Smirnova T, Viru A. Glucocorticoids in metabolic control during exercise: glycogen metabolism. J Sports Med Phys Fitness. 1994;34(4):377382. PubMed ID: 7643583

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31(9):37193728. PubMed ID: 28507168 doi:

  • 14.

    Espinosa A, Leiva A, Peña M, Müller M, Debandi A, Hidalgo C, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol. 2006;209(2):379388. PubMed ID: 16897752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5(2):356377. PubMed ID: 25866921 doi:

  • 16.

    Kaldur T, Kals J, Ööpik V, et al. Effects of heat acclimation on changes in oxidative stress and inflammation caused by endurance capacity test in the heat. Oxid Med Cell Longev. 2014;2014:107137. PubMed ID: 24895525 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nava R, Zuhl MN. Heat acclimation-induced intracellular HSP70 in humans: a meta-analysis. Cell Stress Chaperones. 2020;25(1):3545. PubMed ID: 31823288 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gibson OR, James CA, Mee JA, et al. Heat alleviation strategies for athletic performance: a review and practitioner guidelines. Temperature. 2020;7(1):336. PubMed ID: 32166103 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Stevens, CJ, Bennett, KJM, Sculley, DV, Callister, R, Taylor, L, Dascombe, BJ. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res. 2017;31(3):620629. PubMed ID: 27379961 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bongers CCWG, Daanen HAM, Bogerd CP, Hopman MTE, Eijsvogels TMH. Validity, reliability, and inertia of four different temperature capsule systems. Med Sci Sports Exerc. 2018;50(1):169175. PubMed ID: 28816921 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247248. PubMed ID: 4850854 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Matomäki P, Kainulainen H, Kyröläinen H. Corrected whole blood biomarkers–the equation of Dill and Costill revisited. Physiol Rep. 2018;6(12):e13749. PubMed ID: 29939499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mestre-Alfaro A, Ferrer MD, Banquells M, et al. Body temperature modulates the antioxidant and acute immune responses to exercise. Free Radic Res. 2012;46(6):799808. PubMed ID: 22448737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rhind SG, Gannon GA, Shephard RJ, Buguet A, Shek PN, Radomski MW. Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. Int J Hyperthermia. 2004;20(5):503516. PubMed ID: 15277023 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Peake J, Peiffer JJ, Abbiss CR, et al. Body temperature and its effect on leukocyte mobilization, cytokines and markers of neutrophil activation during and after exercise. Eur J Appl Physiol. 2008;102(4):391401. PubMed ID: 17962974 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Homestead EP, Ryan BJ, Goodrich JA, Byrnes WC. Beneficial effects of cooling during constant power non-steady state cycling. Int J Sports Med. 2017;38(2):141149. PubMed ID: 27984844 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brenner I, Shek PN, Zamecnik J, Shephard RJ. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med. 1998;19(2):130143. PubMed ID: 9562223 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pires W, Veneroso CE, Wanner SP, et al. Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sport Med. 2017;47(7):13891403. PubMed ID: 27943148 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Febbraio MA, Snow RJ, Hargreaves M, Stathis CG, Martin IK, Carey MF. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol. 1994;76(2):589597. PubMed ID: 8175568 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sureda A, Mestre-Alfaro A, Banquells M, et al. Exercise in a hot environment influences plasma anti-inflammatory and antioxidant status in well-trained athletes. J Therm Biol. 2015;47:9198. PubMed ID: 25526659 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 777 777 132
Full Text Views 21 21 3
PDF Downloads 19 19 5