Resistance Training Affects Neuromuscular Fatigue But Not Efficiency in Elite Rowers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To investigate how resistance training (RT) in a regular training program affects neuromuscular fatigue (NMF) and gross efficiency (EGROSS) in elite rowers. Methods: Twenty-six elite male rowers performed 4 RT sessions within 10 days. At baseline and after the first and fourth RT, EGROSS and NMF were established. From breathing gas, EGROSS was determined during submaximal rowing tests. Using a countermovement jump test, NMF was assessed by jump height, flight time, flight-to-contraction-time ratio, peak power, and time to peak power. Muscle soreness was assessed using a 10-cm-long visual analog scale. Results: No significant differences were found for EGROSS (P = .565, ω2 = .032). Muscle soreness (P = .00, ω2 = .500) and time to peak power (P = .08, ω2 = 0.238) were higher compared with baseline at all test moments. Flight-to-contraction-time ratio, jump height, and peak power after the fourth RT differed from baseline (P < .05, ω2 = .36, ω2 = .38, and ω2 = .31) and from results obtained after the first RT (P < .05, ω2 = .36, ω2 = .47, and ω2 = .22). Conclusions: RT in general does not influence EGROSS, but large individual differences (4.1%–14.8%) were observed. NMF is affected by RT, particularly after multiple sessions. During periods of intensified RT, imposed external load for low-intensity endurance training need not be altered, but rowers are recommended to abstain from intensive endurance training. Individual monitoring is strongly recommended.

van den Bogaard and Hofmijster are with the Faculty of Behavioral and Movement Sciences, Dept of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Hofmijster is also with the Amsterdam University of Applied Sciences, Amsterdam, the Netherlands. Bastiaans is with the Royal Dutch Rowing Federation, Amsterdam, the Netherlands.

Hofmijster (m.hofmijster@vu.nl) is corresponding author.
  • 1.

    Lawton TW, Cronin JB, McGuigan MR. Strength, power, and muscular endurance exercise and elite rowing ergometer performance. J Strength Cond Res. 2013;27(7):19281935. PubMed ID: 23085974 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    van der Zwaard S, Weide G, Levels K, et al. Muscle morphology of the vastus lateralis is strongly related to ergometer performance, sprint capacity and endurance capacity in Olympic rowers. J Sports Sci. 2018;36(18):21112120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gee TI, Olsen PD, Berger NJ, Golby J, Thompson KG. Strength and conditioning practices in rowing. J Strength Cond Res. 2011;25(3):668682. PubMed ID: 21311351 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lawton TW, Cronin JB, McGuigan MR. Strength testing and training of elite rowers. Sport Med. 2011;41(5):413432. doi:

  • 5.

    Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413427. PubMed ID: 10623984 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004;34(1):4969. PubMed ID: 14715039 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):21872200. PubMed ID: 28702901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gee TI, Caplan N, Gibbon KC, Howatson G, Thompson KG. Investigating the effects of typical rowing strength training practices on strength and power development and 2,000 m rowing performance. J Hum Kinet. 2016;50(1):167177. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gee TI, Olsen PD, Fritzdorf SWG, White DJ, Golby J, Thompson KG. Recovery of rowing sprint performance after high intensity strength training. Int J Sports Sci Coach. 2012;7(1):109120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37(10):827836. PubMed ID: 17887809 doi:

  • 11.

    Deakin GB. Concurrent Training in Endurance Athletes: The Acute Effects on Muscle Recovery Capacity, Physiological, Hormonal and Gene Expression Responses Post-Exercise [PhD thesis]. Lismore, Australia: Southern Cross University; 2004.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gee TI, French DN, Howatson G, Payton SJ, Berger NJ, Thompson KG. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later? Eur J Appl Physiol. 2011;111(11):26532662. PubMed ID: 21390543 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify female subject groups in sport-science research. Int J Sports Physiol Perform. 2016;11(2):204213. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation an lipogenesis. Acta Physiol Scand. 1987;129(3):443444. PubMed ID: 3577829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Smith TB, Hopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343358. PubMed ID: 22401296 doi:

  • 16.

    Boyas S, Nordez A, Cornu C, Guével A. Power responses of a rowing ergometer: mechanical sensors vs. Concept2® measurement system. Int J Sports Med. 2006;27(10):830833. PubMed ID: 16612738 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    van Ingen Schenau GJ, Cavanagh PR. Power equations in endurance sports. J Biomech. 1990;23(9):865881. PubMed ID: 2211732 doi:

  • 18.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Taylor K, Chapman DW, Cronin JB, Newton MJ, Gill N. Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond. 2012;20(1):1223.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gathercole RJ, Sporer BC, Stellingwerff T, Sleivert GG. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):25222531. PubMed ID: 26308829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol, 2015;4:863874. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Olejnik S, Algina J. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods. 2003;8(4):434447. PubMed ID: 14664681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Beltman JGM, Sargeant AJ, Van Mechelen W, De Haan A. Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. J Appl Physiol. 2004;97(2):619626. PubMed ID: 15075302 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Doma K, Deakin GB, The acute effect of concurrent training on running performance over 6 days. Res Q Exerc Sport, 2015;86(4):387396. PubMed ID: 26241612 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    So RCH, Tse MA, Wong SCW. Application of surface electromyography in assessing muscle recruitment patterns in a six-minute continuous rowing effort. J Strength Cond Res. 2007;21(3):724730. PubMed ID: 17685690 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopker J, Coleman D, Passfield L. Changes in cycling efficiency during a competitive season. Med Sci Sports Exerc. 2009;41(4):912919. PubMed ID: 19276841 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Metz JW, Goss FL, Robertson RJ, Nagle EF, Abt JP. Predictors of 2 kilometer rowing ergometer time trial performance. J Sports Sci. 2019;7:8187. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol. 2001;531(3):871878. PubMed ID: 11251066 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sport. 2003;13(2):8897. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and performance in sport: Consensus statement. Int J Sports Physiol Perform. 2018;13(2):240245. PubMed ID: 29345524 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33:621627. PubMed ID: 11283439 doi:

  • 32.

    Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):28832896. PubMed ID: 27506998 doi:

All Time Past Year Past 30 Days
Abstract Views 538 538 322
Full Text Views 17 17 5
PDF Downloads 12 12 3