The Relationship Between Absolute and Relative Upper-Body Strength and Handcycling Performance Capabilities

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To explore the relationship between absolute and relative upper-body strength and selected measures of handcycling performance. Methods: A total of 13 trained H3/H4-classified male handcyclists (mean [SD] age 37 [11] y; body mass 76.6 [10.1] kg; peak oxygen consumption 2.8 [0.6] L·min−1; relative peak oxygen consumption 36.5 [10] mL·kg·min−1) performed a prone bench-pull and bench-press 1-repetition-maximum strength assessment, a 15-km individual time trial, a graded exercise test, and a 15-second all-out sprint test. Relationships between all variables were assessed using Pearson correlation coefficient. Results: Absolute strength measures displayed a large correlation with gross mechanical efficiency and maximum anaerobic power output (P = .05). However, only a small to moderate relationship was identified with all other measures. In contrast, relative strength measures demonstrated large to very large correlations with gross mechanical efficiency, 15-km time-trial velocity, maximum anaerobic power output, peak aerobic power output, power at a fixed blood lactate concentration of 4 mmol·L−1, and peak oxygen consumption (P = .05). Conclusion: Relative upper-body strength demonstrates a significant relationship with time-trial velocity and several handcycling performance measures. Relative strength is the product of one’s ability to generate maximal forces relative to body mass. Therefore, the development of one’s absolute strength combined with a reduction in body mass may influence real-world handcycling race performance.

Nevin is with Strength and Conditioning, School of Human and Social Sciences, Buckinghamshire New University, High Wycombe, United Kingdom. Smith is with Cardiff Metropolitan University, Cardiff, United Kingdom.

Nevin (jonpaul.nevin@bucks.ac.uk) is corresponding author.
  • 1.

    Union Cycliste Internationale. Cycling Regulations, Part 16 Para-Cycling. Author. 2019.

  • 2.

    Stone B, Mason BS, Bundon A, Goosey-Tolfrey VL. Elite handcycling: a qualitative analysis of recumbent handbike configuration for optimal sports performance. Ergo. 2019;62(3):449458. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Faupin A, Gorce P, Watelain E, Meyer C, Thevenon A. A biomechanical analysis of handcycling: a case study. J Appl Biomech. 2010;26(2):240245. doi:

  • 4.

    Quittmann OJ, Meskemper J, Abel T, et al. Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects. Sports Eng. 2018;21(4), 283294. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Stone B, Mason BS, Warner MB, Goosey-Tolfrey VL. Shoulder and thorax kinematics contribute to increased power output of competitive handcyclists. Scand J Med Sci Sport. 2019;29(6):843853. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Arnet U, Van Drongelen S, Van Der Woude LHV, et al. Shoulder load during handcycling at different incline and speed positions. Clin Biomech. 2012;27(1):16. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Mannion P, Toparlar Y, Clifford E, Hajdukiewicz M, Andrainne T, Blocken B. The impact of arm-crank position on the drag of a Paralympic hand-cyclist. Comp Methods Biomech Biomech Engr. 2019;22(4):386395. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Stone B, Mason BS, Warner MB, Goosey-Tolfrey VL. Horizontal crank position affects economy and upper limb kinematics of recumbent handcyclists. Med Sci Sports Exerc. 2019;51(11):22652273. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Abel T, Schneider S, Platen P, Struder HK. Performance diagnostics in handcycling during competition. Spinal Cord. 2006;44(4):211216. PubMed ID: 16172621 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fischer G, Ardigo L, Figueiredo P. Physiological performance determinants of a 22-km handbiking time trail. Int J Sports Physiol Perform. 2016;10(8):965971. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lovell D, Sheilds D, Beck B, Cuneo R, McLellan C. The aerobic performance of training and untrained handcyclists with spina cord injury. Euro J Appl Physiol. 2012;112(9):34313437. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nevin JP, Smith P, Waldron M, et al. Efficacy of an 8-week concurrent strength and endurance training programme on hand cycling performance. J Strength Cond Res. 2018;32(7):18611868. PubMed ID: 29561384 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Uali I, Herrero AJ, Garatachea N, Marin PJ, Alvear-Ordenes I, Garcia-Lopez D. Maximal strength training on different resistance training rowing exercises predicts start phase performance in elite kayakers. J Strength Cond Res. 2012;26(4):941946. PubMed ID: 22446667

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Torhaug T, Brurok B, Hoff J, Helgerud J, Leivseth G. The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury. Spinal Cord. 2016;54(10):838842. PubMed ID: 26976530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Turbanki S, Schmidtbleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res. 2010;24(1):816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Skovering K, Ettema G, Welde B, Sandbakk O. On the relationship between upper-body strength, power, and sprint performance in ice sledge hockey. J Strength Cond Res. 2013;27(12):34613466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Pearson SN, Hume PA, Cronin JB, Slyfield D. Strength and power determinants of grinding performance in Americas cup sailors. J Strength Cond Res. 2009;23(6):18831889. PubMed ID: 19675468 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Faria EW, Parker DL, Faria IE. The science of cycling factors affecting performance—part 2. Sports Med. 2005;35(4):313337. PubMed ID: 15831060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Groen WG, Van Der Woude LHV, De Koning JJ. A power balance model for handcycling. Disabil Rehabil. 2010;32(26):21652171. PubMed ID: 20695790 doi:

  • 20.

    Bertucci W, Duc S, Villerius V, Pernin JN, Grappe F. Validity and reliability of the powertap mobile cycling power meter when compared with the SRM device. Int J Sports Med. 2015;26(10):868873. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg GA. Psychophysical based of perceived exertion. Med Sci Sports Exerc. 1981;4:377388.

  • 22.

    Garby L, Astrup A. The relationship between the respiratory quotient and the equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand. 1987;129(3):443444. PubMed ID: 3577829 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Quittmann OJ, Abel T, Albrecht K, Strüder HK. Biomechanics of all-out handcycling exercise: kinetics, kinematics, and muscular activity of a 15-s sprint test in able-bodied participants [published online ahead of print May 7, 2020]. Sports Biomech. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Haff GG, Triplett NT. Essentials of Strength Training and Conditioning. 4th ed. Champaign, IL: Human Kinetics. 2016.

  • 25.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sport medicine and exercise science. Med Sci Sports Exerc. 2019;41(1):313. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Jacobs PL. Effects of resistance and endurance training in persons with paraplegia. Med Sci Sports Exerc. 2009;41(9):687708.

  • 27.

    Ronnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sport. 2014;24:603612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Krämer C, Hilker L, Böhm H. Influence of crank length and crank width on maximal hand cycling power and cadence. Eur J Appl Physiol. 2009;106(5):749757. PubMed ID: 19434421 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Quittmann OJ, Abel T, Albrecht K, Strüder HK. Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants [published online ahead of print April 16, 2019]. Sports Biomech. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Verellen J, Janssens L, Meyer C, Vanlandewijck Y. Development and application of a handbike ergometer to measure the 3D force generation pattern during arm crank propulsion in realistic handcycling conditions. Sport Technol. 2012;5(1–2):6573. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lehman G, Buchan DD, Lundy A, Myres N, Nalborcyzk A. Variations in muscle activation levels during traditional latissimus dorsi weight training exercises: an experimental study. Dyn Med. 2004;3:4. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Stastny P, Golas A, Blazek D, et al. A systematic review of surface electromyography analysis on the bench press movement task. PLoS One. 2017;12(2):e0171632. PubMed ID: 28170449 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 91
Full Text Views 1 1 1
PDF Downloads 1 1 1