Differences in V˙O2max Measurements Between Breath-by-Breath and Mixing-Chamber Mode in the COSMED K5

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Automated metabolic analyzers are frequently utilized to measure maximal oxygen consumption (V˙O2max). However, in portable devices, the results may be influenced by the analyzer’s technological approach, being either breath-by-breath (BBB) or dynamic micro mixing chamber mode (DMC). The portable metabolic analyzer K5 (COSMED, Rome, Italy) provides both technologies within one device, and the authors aimed to evaluate differences in V˙O2max between modes in endurance athletes. Methods: Sixteen trained male participants performed an incremental test to voluntary exhaustion on a cycle ergometer, while ventilation and gas exchange were measured by 2 structurally identical COSMED K5 metabolic analyzers synchronously, one operating in BBB and the other in DMC mode. Except for the flow signal, which was measured by 1 sensor and transmitted to both devices, the devices operated independently. V˙O2max was defined as the highest 30-second average. Results: V˙O2max and V˙CO2@V˙O2max were significantly lower in BBB compared with DMC mode (−4.44% and −2.71%), with effect sizes being large to moderate (ES, Cohen d = 0.82 and 1.87). Small differences were obtained for respiratory frequency (0.94%, ES = 0.36), minute ventilation (0.29%, ES = 0.20), and respiratory exchange ratio (1.74%, ES = 0.57). Conclusion: V˙O2max was substantially lower in BBB than in DMC mode. Considering previous studies that also indicated lower V˙O2 values in BBB at high intensities and a superior validity of the K5 in DMC mode, the authors conclude that the DMC mode should be selected to measure V˙O2max in athletes.

The authors are with the Div of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany.

Winkert (kay.winkert@uni-ulm.de) is corresponding author.
  • 1.

    Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM. 1923;os(62):135171. doi:

  • 2.

    Treff G, Winkert K, Sareban M, Steinacker JM, Becker M, Sperlich B. Eleven-week preparation involving polarized intensity distribution is not superior to pyramidal distribution in national elite rowers. Front Physiol. 2017;8:515. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Nevill AM, Jobson SA, Palmer GS, Olds TS. Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach. Eur J Appl Physiol. 2005;94(5–6):705710. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Smirmaul BPC, Bertucci DR, Teixeira IP. Is the VO2max that we measure really maximal? Front Physiol. 2013;4:203. doi:

  • 6.

    Shephard RJ. Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol. 2017;117(3):381387. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Noguchi H, Ogushi Y, Yoshiya I, Itakura N, Yamabayashi H. Breath-by-breath VCO2 and VO2 required compensation for transport delay and dynamic response. J Appl Physiol. 1982;52(1):7984. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Proctor DN, Beck KC. Delay time adjustments to minimize errors in breath-by-breath measurement of VO2 during exercise. J Appl Physiol. 1996;81(6):24952499. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Roecker K, Prettin S, Sorichter S. Gas exchange measurements with high temporal resolution: the breath-by-breath approach. Int J Sports Med. 2005;26(suppl 1):S11S18. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rosdahl H, Lindberg T, Edin F, Nilsson J. The Moxus Modular metabolic system evaluated with two sensors for ventilation against the Douglas bag method. Eur J Appl Physiol. 2013;113(5):13531367. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jakovljevic DG, Nunan D, Donovan G, Hodges LD, Sandercock GRH, Brodie DA. Lack of agreement between gas exchange variables measured by two metabolic systems. J Sports Sci Med. 2008;7:1522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Crouter SE, Antczak A, Hudak JR, DellaValle DM, Haas JD. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur J Appl Physiol. 2006;98(2):139151. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macfarlane DJ, Wong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol. 2012;112(7):25392547. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beltrami FG, Froyd C, Mamen A, Noakes TD. The validity of the Moxus Modular metabolic system during incremental exercise tests: Impacts on detection of small changes in oxygen consumption. Eur J Appl Physiol. 2014;114(5):941950. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. Eur J Appl Physiol. 2010;109(2):159171. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Winkert K, Kirsten J, Dreyhaupt J, Steinacker JM, Treff G. The COSMED K5 in breath-by-breath and mixing chamber mode at low to high intensities. Med Sci Sports Exerc. 2020;52(5):1153–1162. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Perez-Suarez I, Martin-Rincon M, Gonzalez-Henriquez JJ, et al. Accuracy and precision of the COSMED K5 portable analyser. Front Physiol. 2018;9:1764. doi:

  • 18.

    Beijst C, Schep G, van Breda E, Wijn PFF, van Pul C. Accuracy and precision of CPET equipment: a comparison of breath-by-breath and mixing chamber systems. J Med Eng Technol. 2013;37(1):3542. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Overstreet BS, Bassett DR, Crouter SE, Rider BC, Parr BB. Portable open-circuit spirometry systems. J Sports Med Phys Fitness. 2017;57:227237. doi:

  • 20.

    Rønnestad BR, Hansen J, Stensløkken L, Joyner MJ, Lundby C. Case studies in physiology: temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. J Appl Physiol. 2019;127(2):306311. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Steinacker JM, Both M, Whipp BJ. Pulmonary mechanics and entrainment of respiration and stroke rate during rowing. Int J Sports Med. 1993;14(suppl 1):S15S19. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Crouter SE, LaMunion SR, Hibbing PR, Kaplan AS, Bassett DR. Accuracy of the Cosmed K5 portable calorimeter. PLoS One. 2019;14(12):e0226290. doi:

  • 23.

    Guidetti L, Meucci M, Bolletta F, Emerenziani GP, Gallotta MC, Baldari C. Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS One. 2018;13(12):e0209925. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Macfarlane DJ, Wu HL. Inter-unit variability in two ParvoMedics TrueOne 2400 automated metabolic gas analysis systems. Eur J Appl Physiol. 2013;113(3):753762. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic; 1988.

  • 26.

    Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. 2006. http://www.sportsci.org/resource/stats/effectmag. Accessed December 3, 2019.

    • Search Google Scholar
    • Export Citation
  • 27.

    Wasserman K, Hansen JE, Sue DY, et al. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th ed. Philadelphia, PA: Wolters Kluwer/ Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 28.

    Gore CJ, ed. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2000.

  • 29.

    Hodges LD, Brodie DA, Bromley PD. Validity and reliability of selected commercially available metabolic analyzer systems. Scand J Med Sci Sports. 2005;15(5):271279. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. Med Sci Sports Exerc. 2011;43(11):21552160. doi:

  • 31.

    Paton CD, Hopkins WG. Competitive performance of elite Olympic-distance triathletes: reliability and smallest worthwhile enhancement. Sportscience. 2005;9:15.

    • Search Google Scholar
    • Export Citation
  • 32.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):10191028. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 703 703 70
Full Text Views 28 28 1
PDF Downloads 24 24 2