Time Course of Neuromuscular, Hormonal, and Perceptual Responses Following Moderate- and High-Load Resistance Priming Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The aim of this study was to map responses over 32 hours following high-load (HL) and moderate-load (ML) half-squat priming. Methods: Fifteen participants completed control, HL (87% 1RM), and ML (65% 1RM) activities in randomized, counterbalanced order. Countermovement jump (CMJ), squat jump (SJ), saliva testosterone, saliva cortisol, and perceptual measures were assessed before and 5 minutes, 8 hours, 24 hours, and 32 hours after each activity. Results are presented as percentage change from baseline and 95% confidence interval (CI). Cliff delta was used to determine threshold for group changes. Results: SJ height increased by 4.5% (CI = 2.2–6.8, Cliff delta = 0.20) 8 hours following HL. CMJ and SJ improved by 6.1% (CI = 2.1–7.8, Cliff delta = 0.27) and 6.5% (CI = 1.2–11.8, Cliff delta = 0.30), respectively, 32 hours after ML. No clear diurnal changes in CMJ or SJ occurred 8 hours following control; however, increases of 3.9% (CI = 2.9–9.2, Cliff delta = 0.26) and 4.5% (CI = 0.9–8.1, Cliff delta = 0.24), respectively, were observed after 32 hours. Although diurnal changes in saliva hormone concentration occurred (Cliff delta = 0.37–0.92), the influence of priming was unclear. Perceived “physical feeling” was greater 8 hours following HL (Cliff delta = 0.36) and 32 hours after ML and control (Cliff delta = 0.17–0.34). Conclusions: HL priming in the morning may result in small improvements in jump output and psychophysiological state in the afternoon. Similar improvements were observed in the afternoon the day after ML priming.

Harrison, Jenkins, Schuster, and Kelly are with the School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia. Harrison is also with the Queensland Academy of Sport, Nathan, QLD, Australia. Jenkins is also with the School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia. Kelly is also with the School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia. James is with the Dept of Rehabilitation, Nutrition, and Sport, School of Allied Health, La Trobe University, Bundoora, VIC, Australia. McGuigan is with the Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.

Harrison (peter.harrison@uqconnect.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (pdf 193 KB)
    • Supplementary Material 2 (pdf 189 KB)
  • 1.

    Cook CJ, Kilduff LP, Crewther BT, Beaven M, West DJ. Morning based strength training improves afternoon physical performance in rugby union players. J Sci Med Sport. 2014;17(3):317321. PubMed ID: 23707139 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tsoukos A, Veligekas P, Brown LE, Terzis G, Bogdanis GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res. 2018;32(3):643650. PubMed ID: 28291764 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ekstrand LG, Battaglini CL, McMurray RG, Shields EW. Assessing explosive power production using the backward overhead shot throw and the effects of morning resistance exercise on afternoon performance. J Strength Cond Res. 2013;27(1):101106. PubMed ID: 22395279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mason BR, Argus CK, Norcott B, Ball NB. Resistance training priming activity improves upper-body power output in rugby players: implications for game day performance. J Strength Cond Res. 2017;31(4):913920. PubMed ID: 27386962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Resistance priming to enhance neuromuscular performance in sport: evidence, potential mechanisms and directions for future research. Sports Med. 2019;49(10):14991514. PubMed ID: 31203499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Prevalence and application of priming exercise in high performance sport. J Sci Med Sport. 2020;23(3):297303. PubMed ID: 31594712 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Russell M, King A, Bracken RM, Cook CJ, Giroud T, Kilduff LR. A comparison of different modes of morning priming exercise on afternoon performance. Int J Sport Physiol Perform. 2016;11(6):763767. PubMed ID: 26658460 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Marrier B, Durguerian A, Robineau J, et al. . Preconditioning strategy in rugby-7s players: beneficial or detrimental? Int J Sports Physiol Perform. 2019;14(7):918926. PubMed ID: 30569798 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Saez Saez de Villarreal E, González-Badillo JJ, Izquierdo M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur J Appl Physiol. 2007;100(4):393401. PubMed ID: 17394010 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McMahon JJ, Suchomel TJ, Lake JP, Comfort P. Understanding the key phases of the countermovement jump force–time curve. Strength Cond J. 2018;40(4):96106. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sole CJ, Mizuguchi S, Sato K, Moir GL, Stone MH. Phase characteristics of the countermovement jump force-time curve: a comparison of athletes by jumping ability. J Strength Cond Res. 2018;32(4):11551165. PubMed ID: 28644194 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gaviglio CM, Crewther BT, Kilduff LP, Stokes KA, Cook CJ. Relationship between pregame concentrations of free testosterone and outcome in rugby union. Int J Sport Physiol Perform. 2014;9(2):324331. PubMed ID: 23881230 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gould D, Greenleaf C, Medbery R, Guinan D, Peterson K. Factors affecting Olympic performance: perceptions of athletes and coaches from more and less successful teams. Sport Psych. 1999;13(4):371394. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Suchomel TJ, Taber CB, Sole CJ, Stone MH. Force–time differences between ballistic and non-ballistic half-squats. Sports. 2018;6(3):79. PubMed ID: 30103536 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 16.

    Sheppard JM, Doyle TL. Increasing compliance to instructions in the squat jump. J Strength Cond Res. 2008;22(2):648651. PubMed ID: 18550987 doi:

  • 17.

    McMahon JJ, Murphy S, Rej SJE, Comfort P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803811. PubMed ID: 27918658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 2010;42(9):17311744. PubMed ID: 20142784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Curran-Everett D. Evolution in statistics: P values, statistical significance, kayaks, and walking trees. Adv Phys Educ. 2020;44(2):221224. PubMed ID: 32412384 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hurlbert SH, Levine RA, Utts J. Coup de grâce for a tough old bull: “Statistically significant” expires. Am Stat. 2019;73(suppl 1):352357. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Macbeth G, Razumiejczyk E, Ledesma RD. Cliff’s delta calculator: a non-parametric effect size program for two groups of observations. Univ Psychol. 2011;10(2):545555. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44(12):17631774. PubMed ID: 25108349 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:

  • 24.

    Spiteri T, Nimphius S, Hart NH, Specos C, Sheppard JM, Newton RU. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2014;28(9):24152423. PubMed ID: 24875426 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, et al. . Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37(4):295304. PubMed ID: 26667923 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Latella C, Teo W-P, Harris D, Major B, VanderWesthuizen D, Hendy AM. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J App Phys. 2017;117(11):22112224. PubMed ID: 28879576 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Raastad T, Hallen J. Recovery of skeletal muscle contractility after high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82(3):206214. PubMed ID: 10929214 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of Plyometric Training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):2431. PubMed ID: 15085208

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kurokawa S, Fukunaga T, Fukashiro S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol. 2001;90(4):13491358. PubMed ID: 11247934 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: from theory to application [published online ahead of print May 19, 2020]. Strength Cond J. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1567 1567 104
Full Text Views 94 94 3
PDF Downloads 99 99 0