The Metabolic Relevance of Type of Locomotion in Anaerobic Testing: Bosco Continuous Jumping Test Versus Wingate Anaerobic Test of the Same Duration

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To evaluate the metabolic relevance of type of locomotion in anaerobic testing by analyzing and comparing the metabolic profile of the Bosco Continuous Jumping Test (CJ30) with the corresponding profile of the Wingate Anaerobic Test (WAnT). Methods: A total of 11 well-trained, male team-sport athletes (age = 23.7 [2.2] y, height = 184.1 [2.8] cm, weight = 82.4 [6.4] kg) completed a CJ30 and WAnT each. During the WAnT, power data and revolutions per minute were recorded, and during the CJ30, jump height and jumping frequency were recorded. In addition, oxygen uptake and blood lactate concentration were assessed, and metabolic profiles were determined via the PCr-LA-O2 method. Results: In the CJ30, metabolic energy was lower (109.3 [18.0] vs 143.0 [13.1] kJ, P < .001, d = −2.302), while peak power (24.8 [4.4] vs 11.8 [0.5] W·kg−1, P < .001, d = 3.59) and mean power (20.8 [3.6] vs 9.1 [0.5] W·kg−1, P < .001, d = 4.14) were higher than in the WAnT. The metabolic profiles of the CJ30 (aerobic energy = 20.00% [4.7%], anaerobic alactic energy [WPCr] = 45.6% [4.5%], anaerobic lactic energy = 34.4% [5.2%]) and the WAnT (aerobic energy = 16.0% [3.0%], anaerobic alactic WPCr = 34.5% [5.0%], anaerobic lactic energy = 49.5% [3.3%]) are highly anaerobic. Absolute energy contribution for the CJ30 and WAnT was equal in WPCr (49.9 [11.1] vs 50.2 [11.2] kJ), but anaerobic lactic energy (37.7 [7.7] vs 69.9 [5.3] kJ) and aerobic energy (20.6 [5.7] vs 23.0 [4.0] kJ) were higher in the WAnT. Mechanical efficiency was substantially higher in the CJ30 (37.9% [4.5%] vs 15.6% [1.0%], P < .001, d = 6.86), while the fatigue index was lower (18.5% [3.8%] vs 23.2% [3.1%], P < .001, d = −1.38) than in the WAnT. Conclusions: Although the anaerobic share in both tests is similar and predominant, the CJ30 primarily taxes the WPCr system, while the WAnT more strongly relies on the glycolytic pathway. Thus, the 2 tests should not be used interchangeably, and the type of locomotion seems crucial when choosing an anaerobic test for a specific sport.

Kaufmann, Hoos, Beck, and Fueller are with the Center for Sports and Physical Education, Faculty of Human Sciences, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany. Latzel is with the Faculty of Applied Healthcare Sciences, Deggendorf Inst of Technology, Deggendorf, Germany. Beneke is with the Dept of Medicine, Training & Health, Inst of Sports Science, Philipps University of Marburg, Marburg, Germany.

Kaufmann (sebastian.kaufmann@uni-wuerzburg.de) is corresponding author.
  • 1.

    Maud PJ, Foster C. Physiological Assessment of Human Fitness. Champaign, IL: Human Kinetics; 2006.

  • 2.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed ID: 11547894 doi:

  • 3.

    Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil. 2017;38(2):143155. PubMed ID: 28286928 doi:

  • 4.

    Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:905612.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bar-Or O, Dotan R, Inbar O. A 30-second all-out ergometric test: its reliability and validity for anaerobic capacity. Israel J Med Sci. 1977;13(3):326327.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol. 1983;50(2):273282. PubMed ID: 6681758 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sands WA, McNeal JR, Ochi MT, Urbanek TL, Jemni M, Stone MH. Comparison of the Wingate and Bosco anaerobic tests. J Strength Condition Res. 2004;18(4):810815.

    • Search Google Scholar
    • Export Citation
  • 8.

    Dal Pupo J, Gheller RG, Dias JA, Rodacki AL, Moro AR, Santos SG. Reliability and validity of the 30-s continuous jump test for anaerobic fitness evaluation. J Sci Med Sport. 2014;17(6):650655. PubMed ID: 24606832 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol. 2002;87(4–5):388392. PubMed ID: 12172878 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Heck H, Schulz H. Methoden der anaeroben Leistungsdiagnostik. Deutsche Zeitschrift für Sportmedizin. 2002;53(7-8):202212.

  • 11.

    Vandewalle H, Péerès G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4(4):268289. PubMed ID: 3306867 doi:

  • 12.

    Noordhof DA, Skiba PF, de Koning JJ. Determining anaerobic capacity in sporting activities. Int J Sports Physiol Performance. 2013;8(5):475482. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophysi J. 1997;73(4):20432053. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Labeit S, Kolmerer B, Linke WA. The giant protein titin. Circul Res. 1997;80(2):290294. doi:

  • 15.

    Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann G-P. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol. 2005;99(2):603608. PubMed ID: 15845776 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McCaulley GO, Cormie P, Cavill MJ, Nuzzo JL, Urbiztondo ZG, McBride JM. Mechanical efficiency during repetitive vertical jumping. Eur J Appl Physiol. 2007;101(1):115123. PubMed ID: 17530275 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McBride JM, Snyder JG. Mechanical efficiency and force-time curve variation during repetitive jumping in trained and untrained jumpers. Eur J Appl Physiol 2012;112(10):34693477. PubMed ID: 22294292 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Watsford M, Ditroilo M, Fernández-Peña E, D’amen G, Lucertini F. Muscle stiffness and rate of torque development during sprint cycling. Med Sci Sports Exerc. 2010;42(7):13241332. PubMed ID: 20019624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hill AV. The heat of shortening and the dynamic constants of muscle. Proc Royal Soc London Series B-Biol Sci. 1938;126(843):136195.

  • 20.

    Nicol C, Avela J, Komi PV. The stretch-shortening cycle. Sports Med. 2006;36(11):977999. PubMed ID: 17052133 doi:

  • 21.

    Wilson JM, Flanagan EP. The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Condition Res. 2008;22(5):17051715. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Latzel R, Hoos O, Stier S, et al. Energetic profile of the Basketball Exercise Simulation Test in junior elite players. Int J Sports Physiol Perform. 2018;13(6):810–815. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kaufmann S, Hoos O, Kuehl T, et al. Energetic profiles of the Yo-Yo Intermittent Recovery Tests 1 and 2. Int J Sports Physiol Perform. 2020;15(10):1400–1405. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523. PubMed ID: 15138826 doi:

  • 25.

    Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA. Phosphocreatine recovery kinetics following low-and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol—Regul Integr Compar Physiol. 2009;296(1):R161R170. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Li Y, Niessen M, Chen X, Hartmann U. Overestimate of relative aerobic contribution with maximal accumulated oxygen deficit: a review. J Sports Med Phys Fitness. 2015;55(5):377382. PubMed ID: 25303069

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Batterham AM, Cox AJ. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience. 2006;10:4651.

    • Search Google Scholar
    • Export Citation
  • 29.

    Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol. 1989;67(5):18811886. PubMed ID: 2600022 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kavanagh M, Jacobs I. Breath-by-breath oxygen consumption during performance of the Wingate Test. Can J Sport Sci. 1988;13(1):9193. PubMed ID: 3359368

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Calbet J, Chavarren J, Dorado C. Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol. 1997;76(4):308313. PubMed ID: 9349644 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Beneke R, Hoos O. Letter to the editor. Int J Sports Physiol Perform. 2012;7(4): author reply 308309. PubMed ID: 23281504 doi:

  • 33.

    Karatzaferi C, De Haan A, Ferguson R, Van Mechelen W, Sargeant A. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Archiv. 2001;442(3):467474. PubMed ID: 11484780 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Walter G, Vandenborne K, McCully KK, Leigh JS. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol. 1997;272(2, pt 1):C525C534. PubMed ID: 9124295 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Čular D, Zagatto AM, Milić M, Besilja T, Sellami M, Padulo J. Validity and reliability of the 30-s continuous jump for anaerobic power and capacity assessment in combat sport. Front Physiol. 2018;9:543. PubMed ID: 29867580

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Pinot J, Grappe F. Determination of Maximal Aerobic Power from the Record Power Profile to improve cycling training. J Sci Cyc. 2014;3(1):2632.

    • Search Google Scholar
    • Export Citation
  • 37.

    Caretti DM, Szlyk PC, Sils IV. Effects of exercise modality on patterns of ventilation and respiratory timing. Respirat Physiol. 1992;90(2):201211. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Eccles J, Eccles RM, Kozak W. Further investigations on the influence of motoneurones on the speed of muscle contraction. J Physiol. 1962;163(2):324339. PubMed ID: 16992128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bijker K, De Groot G, Hollander A. Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol. 2002;87(6):556561. PubMed ID: 12355196 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kay D, Gibson ASC, Mitchell M, Lambert MI, Noakes TD. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. J Electromyograph Kinesiol. 2000;10(6):425431. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 353 353 99
Full Text Views 17 17 1
PDF Downloads 14 14 1