Sleep Characteristics of Elite Youth Athletes: A Clustering Approach to Optimize Sleep Support Strategies

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Elite athletes experience chronic sleep insufficiency due to training and competition schedules. However, there is little research on sleep and caffeine use of elite youth athletes and a need for a more nuanced understanding of their sleep difficulties. This study aimed to (1) examine the differences in sleep characteristics of elite youth athletes by individual and team sports, (2) study the associations between behavioral risk factors associated with obstructive sleep apnea and caffeine use with sleep quality, and (3) characterize the latent sleep profiles of elite youth athletes to optimize the sleep support strategy. Methods: A group (N = 135) of elite national youth athletes completed a self-administered questionnaire consisting of the Pittsburgh Sleep Quality Index (PSQI) and questions pertaining to obstructive sleep apnea, napping behavior, and caffeine use. K-means clustering was used to characterize unique sleep characteristic subgroups based on PSQI components. Results: Athletes reported 7.0 (SD = 1.2) hours of sleep. Out of the total group, 45.2% of the athletes had poor quality sleep (PSQI global >5), with team-sport athletes reporting significantly poorer sleep quality than individual-sport athletes. Multiple logistic regression analysis indicated that sport type significantly correlated with poor sleep quality. The K-means clustering algorithm classified athletes’ underlying sleep characteristics into 4 clusters to efficiently identify athletes with similar underlying sleep issues to enhance interventional strategies.Conclusion: These findings suggest that elite youth team-sport athletes are more susceptible to poorer sleep quality than individual-sport athletes. Clustering methods can help practitioners characterize sleep-related problems and develop efficient athlete support strategies.

Suppiah and Gastin are with Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia. Suppiah, Wee, and Tay are with the National Youth Sports Institute, Singapore. Swinbourne is with the Singapore Sport Institute, Singapore.

Suppiah (h.suppiah@latrobe.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (pdf 186 KB)
    • Supplementary Material 2 (pdf 182 KB)
    • Supplementary Material 3 (pdf 297 KB)
    • Supplementary Material 4 (pdf 206 KB)
    • Supplementary Material 5 (pdf 187 KB)
  • 1.

    Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161186. PubMed ID: 25315456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Reyner LA, Horne JA. Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine. Physiol Behav. 2013;120C:9396. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gupta L, Morgan K, Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):13171333. PubMed ID: 27900583 doi:

  • 4.

    Swinbourne R, Gill N, Vaile J, Smart D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci. 2016;16(7):850858. PubMed ID: 26697921 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bender AM, Van Dongen HPA, Samuels CH. Sleep quality and chronotype differences between elite athletes and non-athlete controls. Clocks Sleep. 2019;1(1):312. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Iso Y, Kitai H, Kyuno E, et al. Prevalence and significance of sleep disordered breathing in adolescent athletes. ERJ Open Res. 2019;5(1):0002902019. PubMed ID: 30863771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Carskadon MA. Sleep in adolescents: the perfect storm. Pediatr Clin N Am. 2011;58(3):637647. doi:

  • 8.

    Feinberg I, Campbell IG. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation. Am J Physiol Regul Integr Comp Physiol. 2013;304(4):R296R303. PubMed ID: 23193115 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):4043. PubMed ID: 29073412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vlahoyiannis A, Aphamis G, Bogdanis GC, Sakkas GK, Andreou E, Giannaki CD. Deconstructing athletes’ sleep: a systematic review of the influence of age, sex, athletic expertise, sport type, and season on sleep characteristics [published online ahead of print March 19, 2020]. J Sport Health Sci. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Suppiah H, Low CY, Chia M. Effects of sport-specific training intensity on sleep patterns and psychomotor performance in adolescent athletes. Pediatr Exerc Sci. 2016;28(4):588595. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nowak D, Jasionowski A. Analysis of consumption of energy drinks by a group of adolescent athletes. Int J Environ Res Public Health. 2016;13(8):768. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Santos VG, Santos VR, Felippe LJ, et al. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients. 2014;6(2):637649. PubMed ID: 24518826 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bonnar D, Gradisar M. Caffeine and sleep in adolescents: a systematic review. J Caffeine Res. 2015;5(3):105114. doi:

  • 15.

    Dunican IC, Higgins CC, Jones MJ, et al. Caffeine use in a Super Rugby game and its relationship to post-game sleep. Eur J Sport Sci. 2018;18(4):513523. PubMed ID: 29431593 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Halson SL. Sleep monitoring in athletes: motivation, methods, miscalculations and why it matters. Sports Med. 2019;49(10):14871497. PubMed ID: 31093921 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bancks MP, Casanova R, Gregg EW, Bertoni AG. Epidemiology of diabetes phenotypes and prevalent cardiovascular risk factors and diabetes complications in the National Health and Nutrition Examination Survey 2003–2014. Diabetes Res Clin Pract. 2019;158:107915. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193213. PubMed ID: 2748771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485491. PubMed ID: 10507956 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kaufman L. Finding Groups in Data: An Introduction to Cluster Analysis. New York, NY: Wiley; 1990.

  • 21.

    Caia J, Halson SL, Scott TJ, Kelly VG. Intra-individual variability in the sleep of senior and junior rugby league athletes during the competitive season. Chronobiol Int. 2017;34(9):12391247. PubMed ID: 28910543 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gradisar M, Gardner G, Dohnt H. Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med. 2011;12(2):110118. PubMed ID: 21257344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tarokh L, Saletin JM, Carskadon MA. Sleep in adolescence: physiology, cognition and mental health. Neurosci Biobehav Rev. 2016;70:182188. PubMed ID: 27531236 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Yeo SC, Tan J, Lo JC, Chee MWL, Gooley JJ. Associations of time spent on homework or studying with nocturnal sleep behavior and depression symptoms in adolescents from Singapore. Sleep Health. 2020;16(6):758766. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Tan A, Bin Y, Hong Y, Tan L, Van Dam RM, Cistulli P. Self-reported sleep quality in a multi-ethnic Asian population. J Sleep Res. 2017;26(suppl 1):14. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Drew MK, Vlahovich N, Hughes D, et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J Sci Med Sport. 2017;20(8):745750. PubMed ID: 28385561 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Surda P, Putala M, Siarnik P, et al. Sleep in elite swimmers: prevalence of sleepiness, obstructive sleep apnoea and poor sleep quality. BMJ Open Sport Exerc Med. 2019;5(1):e000673. PubMed ID: 32095263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Caia J, Halson SL, Scott A, Kelly VG. Obstructive sleep apnea in professional rugby league athletes: an exploratory study. J Sci Med Sport. 2020;23(11):10111015. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tan A, Cheung YY, Yin J, Lim WY, Tan LW, Lee CH. Prevalence of sleep-disordered breathing in a multiethnic Asian population in Singapore: a community-based study. Respirology. 2016;21(5):943950. PubMed ID: 26929251 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Taylor L, Chrismas BCR, Dascombe B, Chamari K, Fowler PM. Sleep medication and athletic performance—the evidence for practitioners and future research directions. Front Physiol. 2016;7:83. PubMed ID: 27014084

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Stampi C. Evolution, chronobiology, and functions of polyphasic and ultrashort sleep: Main issues. In: Stampi C, ed. Why We Nap: Evolution, Chronobiology, and Functions of Polyphasic and Ultrashort Sleep. Boston, MA: Birkhauser; 1992; 119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Suppiah HT, Low CY, Choong G, Chia M. Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes. Int J Sports Physiol Perform. 2018;14(1):7682. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Branum AM, Rossen LM, Schoendorf KC. Trends in caffeine intake among US children and adolescents. Pediatrics. 2014;133(3):386393. doi:

  • 34.

    Lohsoonthorn V, Khidir H, Casillas G, et al. Sleep quality and sleep patterns in relation to consumption of energy drinks, caffeinated beverages, and other stimulants among Thai college students. Sleep Breath. 2013;17(3):10171028. PubMed ID: 23239460 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Halson SL. Nutrition, sleep and recovery. Eur J Sport Sci. 2008;8(2):119126. doi:

  • 36.

    Centofanti SA, Dorrian J, Grant C, et al. 0200 The effectiveness of caffeine gum in reducing sleep inertia following a 30 min nighttime nap opportunity: preliminary results. Sleep. 2018;41(suppl 1):A78. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Bender AM, Samuels CH. Comment on: “Does elite sport degrade sleep quality? A systematic review.” Sports Med. 2017;47(7):14531454. PubMed ID: 28283995 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Whitworth-Turner C, Di Michele R, Muir I, Gregson W, Drust B. A shower before bedtime may improve the sleep onset latency of youth soccer players. Eur J Sport Sci. 2017;17(9):11191128. PubMed ID: 28691581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Polos PG, Bhat S, Gupta D, et al. The impact of Sleep Time-Related Information and Communication Technology (STRICT) on sleep patterns and daytime functioning in American adolescents. J Adolesc. 2015;44:232244. PubMed ID: 26302334 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Caia J, Scott TJ, Halson SL, Kelly VG. The influence of sleep hygiene education on sleep in professional rugby league athletes. Sleep Health. 2018;4(4):364368. PubMed ID: 30031530 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 825 825 181
Full Text Views 27 27 6
PDF Downloads 29 29 4