Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study aimed to assess the influence of graded air temperatures during repeated-sprint training in hypoxia (RSH) on performance and physiological responses. Methods: Ten well-trained athletes completed one familiarization and 4 experimental sessions at a simulated altitude of 3000 m (0.144 FIO2) above sea level. Air temperatures utilized across the 4 experimental sessions were 20°C, 25°C, 30°C, and 35°C (all 50% relative humidity). The participants performed 3 sets of 5 × 10 seconds “all-out” cycle sprints, with 20 seconds of active recovery between sprints and 5 minutes of active recovery between sets (recovery intensity = 120 W). Core temperature, skin temperature, pulse oxygen saturation, heart rate, rating of perceived exertion, and thermal sensation were collected. Results: There were no differences between conditions for peak power, mean power, and total work in each set (P > .05). There were no condition × time interaction effects for any variables tested. The peak core temperature was highest at 30°C (38.06°C [0.31°C]). Overall, the pulse oxygen saturation was higher at 35°C than at 20°C (P < .001; d < 0.8), 25°C (P < .001; d = 1.12 ± 0.54, large), and 30°C (P < .001; d = 0.84 ± 0.53, large). Conclusion: Manipulating air temperature between 20°C and 35°C had no effect on performance or core temperature during a typical RSH session. However, the pulse oxygen saturation was preserved at 35°C, which may not be a desirable outcome for RSH interventions. The application of increased levels of ambient heat may require a different approach if augmenting the RSH stimulus is the desired outcome.

Dennis, Goods, Binnie, Girard, Wallman, Dawson, and Peeling are with the School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia. Dennis, Goods, Binnie, and Peeling are also with the Western Australian Inst of Sport, Mt Claremont, WA, Australia.

Dennis (myles.dennis@research.uwa.edu.au) is corresponding author.
  • 1.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):11401147. PubMed ID: 20724560 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Beard A, Ashby J, Chambers R, Brocherie F, Millet GP. Repeated-sprint training in hypoxia in international rugby union players. Int J Sports Physiol Perform. 2019;14(6):850854. PubMed ID: 30569787 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(suppl 1):i45i50. PubMed ID: 24282207 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brocherie F, Girard O, Faiss R, Millet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47(8):16511660. PubMed ID: 28194720 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Girard O, Brocherie F, Goods PS, Millet GP. An updated panorama of “living low-training high” altitude/hypoxic methods. Front Sports Act Living. 2020;2:26. PubMed ID: 33345020 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Millet GP, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia—an innovative method. Dtsch Z Sportmed. 2019;2019(5):115122. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wang R, Fukuda DH, Hoffman JR, et al. Distinct effects of repeated-sprint training in normobaric hypoxia and β-alanine supplementation. J Am Coll Nutr. 2019;38(2):149161. PubMed ID: 30277420 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Goods PS, Dawson BT, Landers GJ, Gore CJ, Peeling P. Effect of different simulated altitudes on repeat-sprint performance in team-sport athletes. Int J Sports Physiol Perform. 2014;9(5):857862. PubMed ID: 24509626 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Girard O, Bishop D, Racinais S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol. 2013;113(2):359369. PubMed ID: 22743981 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Girard O, Brocherie F, Bishop D. Sprint performance under heat stress: a review. Scand J Med Sci Sports. 2015;25(S1):7989. PubMed ID: 25943658 doi:

  • 11.

    Gray SR, De Vito G, Nimmo MA, Farina D, Ferguson RA. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am J Physiol Regul Integr Comp Physiol. 2006;290(2):R376R382. PubMed ID: 16166210 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bishop D. Warm up I. Sports Med. 2003;33(6):439454. PubMed ID: 12744717 doi:

  • 13.

    González‐Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):4553. PubMed ID: 17855754 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol. 2005;183(2):181190. PubMed ID: 15676059 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ramanathan N. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531533. PubMed ID: 14173555 doi:

  • 16.

    Young AJ, Sawka MN, Epstein Y, DeCristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. PubMed ID: 3654466 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 18.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: Foundation for Statistical Computing; 2020.

  • 19.

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:

  • 20.

    Fox J, Weisberg S. An R Companion to Applied Regression. Thousand Oaks, CA: SAGE; 2011.

  • 21.

    Lenth R. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.1. 2020;1(1):3. https://CRAN.R-project.org/package=emmeans

    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1(3):98101. doi:

  • 23.

    Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single-and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47(10):19311949. PubMed ID: 28451905 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Yamaguchi K, Kasai N, Hayashi N, Yatsutani H, Girard O, Goto K. Acute performance and physiological responses to repeated‐sprint exercise in a combined hot and hypoxic environment. Physiol Rep. 2020;8(21):e14466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Yaicharoen P, Wallman K, Morton A, Bishop D, Grove RJ. The effects of warm-up on intermittent sprint performance in a hot and humid environment. J Sports Sci. 2012;30(10):967974. PubMed ID: 22568559 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Girard O, Brocherie F, Morin J-B, Millet GP. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study. J Sports Sci. 2016;34(12):11901198. PubMed ID: 26473996 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bradbury KE, Coffman KE, Mitchell KM, Luippold AJ, Fulco CS, Kenefick RW. Separate and combined influences of heat and hypobaric hypoxia on self-paced aerobic exercise performance. J App Physiol. 2019;127(2):513519. PubMed ID: 31219777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Khan M, Pretty CG, Amies AC, Elliott R, Shaw GM, Chase JG. Investigating the effects of temperature on photoplethysmography. IFAC-PapersOnLine. 2015;48(20):360365. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Febbraio M, Snow R, Stathis C, Hargreaves M, Carey M. Effect of heat stress on muscle energy metabolism during exercise. J App Physiol. 1994;77(6):28272831. PubMed ID: 7896628 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Casa DJ. Exercise in the heat. I. Fundamentals of thermal physiology, performance implications, and dehydration. J Athl Train. 1999;34(3):246. PubMed ID: 16558572

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 286 286 286
Full Text Views 11 11 11
PDF Downloads 9 9 9