# Peak Blood Lactate Concentration and Its Arrival Time Following Different Track Running Events in Under-20 Male Track Athletes

View More View Less
Restricted access

### 2 year online subscription

USD  \$284.00

Purpose: To determine (1) the time of arrival of peak blood lactate concentration ([BLa]peak) followed by various track events and (2) significant correlation, if any, between average velocity and [BLa]peak in these events. Methods: In 58 under-20 male track athletes, heart rate was recorded continuously and blood lactate concentration was determined at various intervals following 100-m (n = 9), 200-m (n = 8), 400-m (flat) (n = 9), 400-m hurdles (n = 8), 800-m (n = 9), 1500-m (n = 8), 3000-m steeplechase (n = 7), and 5000-m (n = 10) runs. Results: The [BLa]peak, in mmol/L, was recorded highest following the 400-m run (18.27 [3.65]) followed by 400-m hurdles (16.25 [3.14]), 800-m (15.53 [3.25]), 1500-m (14.71 [3.00]), 200-m (14.42 [3.40]), 3000-m steeplechase (11.87 [1.48]), 100-m (11.05 [2.36]), and 5000-m runs (8.65 [1.60]). The average velocity of only the 400-m run was found to be significantly correlated (r = .877, p < 0.05) with [BLa]peak. The arrival time of [BLa]peak following 100-m, 200-m, 400-m, 400-m hurdles, 800-m, 1500-m, 3000-m steeplechase, and 5000-m runs was 4.44 (0.83), 4.13 (0.93), 4.22 (0.63), 3.75 (0.83), 3.34 (1.20), 2.06 (1.21), 1.71 (1.44), and 1.06 (1.04) minutes, respectively, of the recovery period. Conclusion: In under-20 runners, (1) [BLa]peak is highest after the 400-m run, (2) the time of appearance of [BLa]peak varies from one event to another but arrives later after sprint events than longer distances, and (3) the 400-m (flat) run is the only event wherein the performance is significantly correlated with the [BLa]peak.

Gupta is with the Faculty of Medical Sciences, The University of West Indies, Cave Hill, Barbados. Stanula is with the Inst of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland. Goswami is with the Dept of Sports Science & Yoga, Faculty of General & Adapted Physical Education & Yoga, Ramakrishna Mission Vivekananda Educational and Research Inst, West Bengal, India.

Stanula (a.stanula@awf.katowice.pl) is corresponding author.

# International Journal of Sports Physiology and Performance

• 1.

Brandon LJ. Physiological factors associated with middle distance running performance. Sports Med. 1995;19(4):268277. doi:

• 2.

Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48(5):11171149. doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 3.

Canfield TJ, Gabel KA. Blood lactate, heart rate, and rating of perceived exertion in collegiate sprint, middle distance, and long distance runners after 400 and 1600 meter runs. Int J Medical, Pharm Eng. 2013;7(8):218221.

• Search Google Scholar
• Export Citation
• 4.

Fujitsuka N, Yamamoto T, Ohkuwa T, Saito M, Miyamura M. Peak blood lactate after short periods of maximal treadmill running. Eur J Appl Physiol Occup Physiol. 1982;48(3):289296. PubMed ID: 7200871 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 5.

Nummela A, Vuorimaa T, Rusko H. Changes in force production, blood lactate and emg activity in the 400-m sprint. J Sports Sci. 1992;10(3):217228. PubMed ID: 1602525 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 6.

Takei N, Takahashi K, Kakinoki K, Hatta H. Relationships between rate of increase in post-exercise blood lactate concentration and performance of short-term high-intensity exercise in track athletes. J Phys Fit Sports Med. 2018;7(5):253259. doi:

• Crossref
• Search Google Scholar
• Export Citation
• 7.

Vucetic V, Mozek M, Rakovac M. Peak blood lactate parameters in athletes of different running events during low-intensity recovery after ramp-type protocol. J Strength Cond Res. 2015;29(4):10571063. PubMed ID: 25353074 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 8.

Zouhal H., Abderrahman A.B., Prioux J., et al. . Drafting’s improvement of 3000-m running performance in elite athletes: is it a placebo effect? Int J Sports Physiol Perform. 2015;10(2);147–152. doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 9.

White R, Yaeger D, Stavrianeas S. Determination of blood lactate concentration: reliability and validity of a lactate oxidase-based method. Int J Exerc Sci. 2009;2(2):8393.

• Search Google Scholar
• Export Citation
• 10.

Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. http://www.sportsci.org/resource/stats/effectmag.html. Published 2002. Accessed July 15, 2020.

• Search Google Scholar
• Export Citation
• 11.

Cohen J. A power primer. Psychol Bull. 1992;112:155.

• 12.

Rabadán M, Díaz V, Calderón FJ, Benito PJ, Peinado AB, Maffulli N. Physiological determinants of speciality of elite middle- and long-distance runners. J Sports Sci. 2011;29(9):975982. PubMed ID: 21604227 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 13.

Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci. 2005;23(3):299307. PubMed ID: 15966348 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 14.

Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport. 2004;7(3):302313. PubMed ID: 15518295 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 15.

McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):15231546. doi:

• Crossref
• Search Google Scholar
• Export Citation
• 16.

Hirvonen J, Rehunen S, Rusko H, Härkönen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):253259. PubMed ID: 3569234 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 17.

Hautier CA, Wouassi D, Arsac LM, Bitanga E, Thiriet P, Lacour JR. Relationships between postcompetition blood lactate concentration and average running velocity over 100-m and 200-m races. Eur J Appl Physiol Occup Physiol. 1994;68(6):508513. PubMed ID: 7957143 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 18.

Zouhal H, Jabbour G, Jacob C, et al. . Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running. J Strength Cond Res. 2010;24(9):23092315. PubMed ID: 20703164 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 19.

Gupta S, Goswami A, Mukhopadhyay S. Heart rate and blood lactate in 400 m flat and 400 m hurdle running: a comparative study. Indian J Physiol Pharmacol. 1999;43(3):361366. PubMed ID: 10776485

• Search Google Scholar
• Export Citation
• 20.

Lacour JR, Bouvat E, Barthélémy JC. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur J Appl Physiol Occup Physiol. 1990;61(3-4):172176. PubMed ID: 2282899 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 21.

Stanula A, Gabrys T, Szmatlan-Gabrys U, Roczniok R, Maszczyk A, Pietraszewski P. Calculating lactate anaerobic thresholds in sports involving different endurance preparation. J Exerc Sci Fit. 2013;11(1):1218. doi:

• Crossref
• Search Google Scholar
• Export Citation
• 22.

Withers RT, Sherman WM, Clark DG, et al. . Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol. 1991;63(5):354362. PubMed ID: 1773812 doi:

• Crossref
• Search Google Scholar
• Export Citation
• 23.

Svedenhag J, Sjodin B. Maximal and submaximal oxygen uptakes and blood lactate levels in elite male middle- and long-distance runners. Int J Sports Med. 1984;5(5):255261. PubMed ID: 6500792 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 24.

Felippe LC, Ferreira GA, De-Oliveira F, Pires FO, Lima-Silva AE. Arterialized and venous blood lactate concentration difference during different exercise intensities. J Exerc Sci Fit. 2017;15(1):2226. PubMed ID: 29541127 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 25.

Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(1):530. doi:

• 26.

Poortmans JR, Delescaille-Vanden Bossche J, Leclercq R. Lactate uptake by inactive forearm during progressive leg exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(6):835839. PubMed ID: 730585

• PubMed
• Search Google Scholar
• Export Citation
• 27.

Bonen A, Campbell CJ, Kirby RL, Belcastro AN. A multiple regression model for blood lactate removal in man. Pflügers Arch Eur J Physiol. 1979;380(3):205210. doi:

• Crossref
• Search Google Scholar
• Export Citation
• 28.

Tesch PA, Wright JE. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1983;52(1):98103. PubMed ID: 6686137 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 29.

Foxdal P, Sjödin B, Rudstam H, Östman C, Östman B, Hedenstierna GC. Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):218222. PubMed ID: 2282904 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 30.

Ohkuwa T, Kato Y, Katsumata K, Nakao T, Miyamura M. Blood lactate and glycerol after 400-m and 3,000-m runs in sprint and long distance runners. Eur J Appl Physiol Occup Physiol. 1984;53(3):213218. PubMed ID: 6542855 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 31.

Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64(1):5060. PubMed ID: 3356666 doi:

• Crossref
• Search Google Scholar
• Export Citation
• 32.

Goodwin ML, Harris JE, Hernández A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol. 2007;1(4):558569. PubMed ID: 19885119 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 33.

Maughan RJ, Watson JS, Weir J. Relationships between muscle strength and muscle cross-sectional area in male sprinters and endurance runners. Eur J Appl Physiol Occup Physiol. 1983;50(3):309318. PubMed ID: 6683155 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
• 34.

Donovan CM, Pagliassotti MJ. Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types. Med Sci Sports Exerc. 2000;32:772777.

• PubMed
• Search Google Scholar
• Export Citation
• 35.

Van Beaumont W, Underkofler S, Van Beaumont S. Erythrocyte volume, plasma volume, and acid-base changes in exercise and heat dehydration. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(6):12551262. PubMed ID: 7263386

• Search Google Scholar
• Export Citation
• 36.

Davis JA, Rozenek R, DeCicco DM, Carizzi MT, Pham PH. Effect of plasma volume loss during graded exercise testing on blood lactate concentration. J Physiol Sci. 2007;57(2):9599. PubMed ID: 17316478 doi:

• Crossref
• PubMed
• Search Google Scholar
• Export Citation
All Time Past Year Past 30 Days
Abstract Views 703 703 176
Full Text Views 18 18 2