Dose–Response Relationship Between Velocity Loss During Resistance Training and Changes in the Squat Force–Velocity Relationship

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: This study aimed to compare the adaptations provoked by various velocity loss (VL) thresholds used in resistance training on the squat force–velocity (F–V) relationship. Methods: Sixty-four resistance-trained young men were randomly assigned to one of four 8-week resistance training programs (all 70%–85% 1-repetition maximum) using different VL thresholds (VL0 = 0%, VL10 = 10%, VL20 = 20%, and VL40 = 40%) in the squat exercise. The F–V relationship was assessed under unloaded and loaded conditions in squat. Linear and hyperbolic (Hill) F–V equations were used to calculate force at zero velocity (F 0), velocity at zero force (V 0), maximum muscle power (P max), and force produced at mean velocities ranging from 0.0 to 2.0 m·s−1. Changes in parameters derived from the F–V relationship were compared among groups using linear mixed models. Results: Linear equations showed increases in F 0 (120.7 N [89.4 to 152.1]) and P max (76.2 W [45.3 to 107.2]) and no changes in V 0 (−0.02 m·s−1 [−0.11 to 0.06]) regardless of VL. Hyperbolic equations depicted increases in F 0 (120.7 N [89.4 to 152.1]), V 0 (1.13 m·s−1 [0.78 to 1.48]), and P max (198.5 W [160.5 to 236.6]) with changes in V 0 being greater in VL0 and VL10 versus VL40 (both P < .001). All groups similarly improved force at 0.0 to 2.0 m·s−1 (all P < .001), although in general, effect sizes were greater in VL10 and VL20 versus VL0 and VL40 at velocities ≤0.5 m·s−1. Conclusions: All groups improved linear and hyperbolic F 0 and P max and hyperbolic V 0 (except VL40). The dose–response relationship exhibited an inverted U-shape pattern at velocities ≤0.5 m·s−1 with VL10 and VL20 showing the greatest standardized changes.

Alcazar and Alegre are with the GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain, and the CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain. Cornejo-Daza, Sánchez-Valdepeñas, and Pareja-Blanco are with the Physical Performance and Sports Research Center, Pablo de Olavide University, Seville, Spain; Pareja-Blanco is also with the Faculty of Sport Sciences at the university.

Alcazar (julian.alcazar@uclm.es) is corresponding author.
  • 1.

    Seow CY. Hill’s equation of muscle performance and its hidden insight on molecular mechanisms. J Gen Physiol. 2013;142(6):561573. PubMed ID: 24277600 doi:

  • 2.

    Nagano A, Komura T. Longer moment arm results in smaller joint moment development, power and work outputs in fast motions. J Biomech. 2003;36(11):16751681. PubMed ID: 14522209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dorel S, Hautier CA, Rambaud O, et al. . Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26(9):739746. PubMed ID: 16237619 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677. PubMed ID: 28119624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Schleichardt A, Badura M, Lehmann F, Ueberschar O. Comparison of force-velocity profiles of the leg-extensors for elite athletes in the throwing events relating to gender, age and event. Sports Biomech. Published online May 27, 2019. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bell GJ, Wenger HA. Physiological adaptations to velocity-controlled resistance training. Sports Med. 1992;13(4):234244. PubMed ID: 1615252 doi:

  • 7.

    Andersen LL, Andersen JL, Magnusson SP, et al. . Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol. 2005;99(1):8794. PubMed ID: 15731398 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. . Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724735. PubMed ID: 27038416 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. . Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762. PubMed ID: 32049887 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cormie P, McBride JM, McCaulley GO. The influence of body mass on calculation of power during lower-body resistance exercises. J Strength Cond Res. 2007;21(4):10421049. PubMed ID: 18076268 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alcazar J, Pareja-Blanco F, Rodriguez-Lopez C, et al. . Comparison of linear, hyperbolic and double-hyperbolic models to assess the force–velocity relationship in multi-joint exercises. Eur J Sport Sci. Published online May 4, 2020. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Alcazar J, Rodriguez-Lopez C, Ara I, et al. . The force-velocity relationship in older people: reliability and validity of a systematic procedure. Int J Sports Med. 2017;38(14):10971104. PubMed ID: 29126339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36(9):699704. PubMed ID: 25806588 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rivière JR, Rossi J, Jimenez-Reyes P, Morin JB, Samozino P. Where does the one-repetition maximum exist on the force-velocity relationship in Squat? Int J Sports Med. 2017;38(13):10351043. PubMed ID: 28965339 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alcazar J, Navarro-Cruz R, Rodriguez-Lopez C, Vila-Maldonado S, Ara I. The double-hyperbolic force-velocity relationship in humans. Acta Physiol. 2019;226(4):e13165. PubMed ID: 30040172 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lon B Biol Sci. 1938;126(843):136195.

  • 18.

    Coyle EF, Feiring DC, Rotkis TC, et al. . Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(6):14371442. PubMed ID: 7319877 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Caiozzo VJ, Perrine JJ, Edgerton VR. Training-induced alterations of the in vivo force-velocity relationship of human muscle. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(3):750754. PubMed ID: 7327976 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hakkinen K, Komi PV. Changes in electrical and mechanical behavior of leg extensor muscles during heavy resistance strength training. Scand J Sports Sci. 1985;7(2):5564.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hakkinen K, Komi PV. Effect of explosive type strength training on electromyographic and force production characteristics of leg extensor muscles during concentric and various stretch-shortening cycle exercises. Scand J Sports Sci. 1985;7(2):6576.

    • Search Google Scholar
    • Export Citation
  • 22.

    Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39(6):9961003. PubMed ID: 17545891 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):15821598. PubMed ID: 20139780 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Zabaloy S, Pareja-Blanco F, Giráldez JC, Rasmussen JI, González JG. Effects of individualised training programmes based on the force-velocity imbalance on physical performance in rugby players. Isokinet Exerc Sci. 2020;28(2):181190. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pérez-Castilla A, García-Ramos A, Padial P, Morales-Artacho AJ, Feriche B. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci. 2018;36(12):13311339. PubMed ID: 28892463 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bell GJ, Petersen SR, MacLean I, Reid DC, Quinney HA. Effect of high velocity resistance training on peak torque, cross sectional area and myofibrillar ATPase activity. J Sports Med Phys Fitness. 1992;32(1):1018. PubMed ID: 1405568

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Simunič B, Degens H, Rittweger J, Narici M, Mekjavić IB, Pišot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc. 2011;43(9):16191625. PubMed ID: 21552151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Haun CT, Vann CG, Osburn SC, et al. . Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One. 2019;14(6):e0215267. PubMed ID: 31166954 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gonzalez-Badillo JJ, Sanchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(5):347352. PubMed ID: 20180176 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. . Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin Physiol Funct Imaging. 2017;37(6):630639. PubMed ID: 26970332 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Alcazar J, Csapo R, Ara I, Alegre LM. On the shape of the force-velocity relationship in skeletal muscles: the linear, the hyperbolic, and the double-hyperbolic. Front Physiol 2019;10:769. PubMed ID: 31275173 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103118. PubMed ID: 17603130 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dugan EL, Doyle TLA, Humphries B, Hasson CJ, Newton RU. Determining the optimal load for jump squats: a review of methods and calculations. J Strength Cond Res. 2004;18(3):668674. PubMed ID: 15320681 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Saeterbakken AH, Olsen A, Behm DG, Bardstu HB, Andersen V. The short- and long-term effects of resistance training with different stability requirements. PLoS One. 2019;14(4):e0214302. PubMed ID: 30934001 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Schwanbeck SR, Cornish SM, Barss T, Chilibeck PD. Effects of training with free weights versus machines on muscle mass, strength, free testosterone, and free cortisol levels. J Strength Cond Res. 2020;34(7):18511859. PubMed ID: 32358310 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, et al. . Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations and muscle hypertrophy. Scand J Med Sci Sports. 2020; 30(11):21542166. PubMed ID: 32681665 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1556 1556 101
Full Text Views 44 44 2
PDF Downloads 38 38 4