M. Biceps Femoris Long Head Architecture and Sprint Ability in Youth Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Hamstring muscle architecture may be associated with sprint performance and the risk of sustaining a muscle injury, both of which increase during puberty. In this study, we investigated the m. biceps femoris long head (BFlh) cross-sectional area (ACSA), fascicle length (FL) and pennation angle (PA), and sprint performance as well as their relationship in under 13 to 15 youth soccer players. Methods: We measured 85 players in under-13 (n = 29, age = 12.5 [0.1] y, height = 155.3 [6.2] cm, weight = 43.9 [7.6] kg), under-14 (n = 25, age = 13.5 [0.3] y, height = 160.6 [7.7] cm, weight = 47.0 [6.8] kg), and under-15 (n = 31, age = 14.4 [0.3] y, height = 170.0 [7.7] cm, weight = 58.1 [8.8] kg) teams. We used ultrasound to measure BFlh ACSA, FL and PA, and sprint tests to assess 10- and 30-m sprint time, maximal velocity  (vmax), and maximal acceleration (αmax). We calculated Pearson r to assess the relationship between sprint ability and architectural parameters. Results: All muscle architectural parameters increased from the under-13 to the under-15 age group (BFlh ACSA = 37%, BFlh FL = 11%, BFlh PA = 8%). All sprint performance parameters improved from the under-13 to under-15 age categories (30-m time = 7%, 10-m time = 4%, vmax = 9%, αmax = 7%). The BFlh ACSA was correlated with 30-m sprint time (r = −.61 (95% compatibility interval [CI] [−.73, −.45]) and vmax (r = .61, 95% CI [.45, .72]). A combination of BFlh ACSA and age best predicted 30-m time (R² = .47 [.33, .62]) and 10-m time (R² = .23 [.08, .38]). Conclusions: Muscle architectural as well as sprint performance parameters increase from the under-13 to under-15 age groups. Even though we found correlations for all assessed architectural parameters, BFlh ACSA was best related to the assessed sprint parameters.

Ritsche, Bernhard, Roth, Lichtenstein, Keller, and Faude are with the Dept of Sport, Exercise and Health, University of Basel, Basel, Switzerland. Bernhard and Zingg are with the FC Basel 1893, Basel, Switzerland. Franchi is with the Dept of Biomedical Sciences, Inst of Physiology, University of Padua, Padova, Italy.

Ritsche (paul.ritsche@unibas.ch) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (pdf 354 KB)
    • Supplementary Figure S2 (pdf 390 KB)
    • Supplementary Material (pdf 270 KB)
    • Supplementary Table S1 (pdf 376 KB)
    • Supplementary Table S2 (pdf 357 KB)
    • Supplementary Table S3 (pdf 295 KB)
  • 1.

    Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English premier league. Int J Sports Med. 2014;35(13):10951100. PubMed ID: 25009969 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625631. PubMed ID: 22394328 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gonaus C, Birklbauer J, Lindinger SJ, Stöggl TL, Müller E. Changes over a decade in anthropometry and fitness of elite Austrian youth soccer players. Front Physiol. 2019;10:333. PubMed ID: 30984022 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Morin J-B, Gimenez P, Edouard P, et al. . Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed ID: 26733889 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647658. PubMed ID: 21912301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553558. PubMed ID: 19553225 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47(13):33253333. PubMed ID: 25189094 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rössler R, Junge A, Chomiak J, Dvorak J, Faude O. Soccer injuries in players aged 7 to 12 years: a descriptive epidemiological study over 2 seasons. Am J Sports Med. 2016;44(2):309317. PubMed ID: 26646513 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hall ECR, Larruskain J, Gil SM, et al. . An injury audit in high-level male youth soccer players from English, Spanish, Uruguayan and Brazilian academies. Phys Ther Sports. 2020;44:5360. PubMed ID: 32416582 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Valle X, Malliaropoulos N, Párraga Botero JD, et al. . Hamstring and other thigh injuries in children and young athletes. Scand J Med Sci Sports. 2018;28(12):26302637. PubMed ID: 30120838 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):15241535. PubMed ID: 26675089 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kellis E. Intra- and inter-muscular variations in hamstring architecture and mechanics and their implications for injury: a narrative review. Sports Med. 2018;48(10):22712283. PubMed ID: 30117053 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32(6):11251129. PubMed ID: 10862540 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci. 2001;20(2):141147. PubMed ID: 11385937 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol Bethesda Md 1985. 2000;88(3):811816. PubMed ID: 10710372 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):16471666. PubMed ID: 11054744 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs short muscle length eccentric training. Front Physiol. 2016;7:340. PubMed ID: 27536252 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Fransen J, Bush S, Woodcock S, et al. . Improving the prediction of maturity from anthropometric variables using a maturity ratio. Pediatr Exerc Sci. 2018;30(2):296307. PubMed ID: 28605273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):5771. PubMed ID: 28900862 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694. PubMed ID: 11932580 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Franchi MV, Fitze DP, Raiteri BJ, Hahn D, Spörri J. Ultrasound-derived biceps femoris long head fascicle length: extrapolation pitfalls. Med Sci Sports Exerc. 2020;52(1):233243. PubMed ID: 31403609 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kositsky A, Goncalves BAM, Stenroth L, Barrett RS, Diamond LE, Saxby DJ. Reliability and validity of ultrasonography for measurement of hamstring muscle and tendon cross-sectional area. Ultrasound Med Biol. 2020;46(1):5563. PubMed ID: 31668942 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Franchi MV, Fitze DP, Hanimann J, Sarto F, Spörri J. Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Sci Rep. 2020;10(1):14144. PubMed ID: 32839500 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Franchi MV, Raiteri BJ, Longo S, Sinha S, Narici MV, Csapo R. Muscle architecture assessment: strengths, shortcomings and new frontiers of in vivo imaging techniques. Ultrasound Med Biol. 2018;44(12):24922504. PubMed ID: 30185385 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Frencken WGP, Lemmink KAPM, Delleman NJ. Soccer-specific accuracy and validity of the local position measurement (LPM) system. J Sci Med Sport. 2010;13(6):641645. PubMed ID: 20594910 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Stevens TGA, de Ruiter CJ, van Niel C, van de Rhee R, Beek PJ, Savelsbergh GJP. Measuring acceleration and deceleration in soccer-specific movements using a local position measurement (LPM) system. Int J Sports Physiol Perform. 2014;9(3):446456. PubMed ID: 24509777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Petrie AG. Introduction to Regression and Modeling with R. 1st ed. Cognelle Inc; 2016.

  • 30.

    Evangelidis PE, Massey GJ, Pain MTG, Folland JP. Strength and size relationships of the quadriceps and hamstrings with special reference to reciprocal muscle balance. Eur J Appl Physiol. 2016;116(3):593600. PubMed ID: 26718933 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Franchi MV, Atherton PJ, Maganaris CN, et al. Fascicle length does increase in response to longitudinal resistance training and in a contraction-mode specific manner. SpringerPlus. 2016;5:94. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Franchi MV, Ellenberger L, Javet M, et al. . Maximal eccentric hamstrings strength in competitive alpine skiers: cross-sectional observations from youth to elite level. Front Physiol. 2019;10:88. PubMed ID: 30833902 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lacome M, Avrillon S, Cholley Y, Simpson BM, Guilhem G, Buchheit M. Hamstring eccentric strengthening program: does training volume matter? Int J Sports Physiol Perform. 2020;15(1):8190. PubMed ID: 31034261 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Masuda K, Kikuhara N, Takahashi H, Yamanaka K. The relationship between muscle cross-sectional area and strength in various isokinetic movements among soccer players. J Sports Sci. 2003;21(10):851858. PubMed ID: 14620028 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in australian footballers. Med Sci Sports Exerc. 2015;47(4):857865. PubMed ID: 25137368 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):22962303. PubMed ID: 21825112 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Krommes K, Petersen J, Nielsen MB, Aagaard P, Hölmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week Nordic Hamstring exercise Protocol: a randomised pilot study. BMC Res Notes. 2017;10(1):669. PubMed ID: 29202784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ishøi L, Hölmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the Nordic Hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):16631672. PubMed ID: 29192837 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Radnor JM, Oliver JL, Waugh CM, Myer GD, Lloyd RS. The influence of maturity status on muscle architecture in school-aged boys. Pediatr Exerc Sci. 2020;32(2):8996. PubMed ID: 32074507 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mathisen G, Pettersen SA. Anthropometric factors related to sprint and agility performance in young male soccer players. Open Access J Sports Med. 2015;6:337342. PubMed ID: 26604842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 799 799 130
Full Text Views 36 36 7
PDF Downloads 20 20 5