Effect of Warm-Up and Sodium Bicarbonate Ingestion on 4-km Cycling Time-Trial Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine whether an ecologically valid, intermittent, sprint-based warm-up strategy impacted the ergogenic capacity of individualized sodium bicarbonate (NaHCO3) ingestion on 4-km cycling time-trial (TT) performance. Methods: A total of 8 male cyclists attended 6 laboratory visits for familiarization, determination of time to peak blood bicarbonate, and 4 × 4-km cycling TTs. Experimental beverages were administered doubleblind. Treatments were conducted in a block-randomized, crossover order: intermittent warm-up + NaHCO3 (IWSB), intermittent warm-up + placebo, control warm-up + NaHCO3 (CWSB), and control warm-up + placebo (CWP). The intermittent warm-up comprised exercise corresponding to lactate threshold (5 min at 50%, 2 min at 60%, 2 min at 80%, 1 min at 100%, and 2 min at 50%) and 3 × 10-second maximal sprints. The control warm-up comprised 16.5 minutes cycling at 150 W. Participants ingested 0.3 g·kg body mass−1 NaHCO3 or 0.03 g·kg body mass−1 sodium chloride (placebo) in 5 mL·kg body mass−1 fluid (3:2, water and sugar-free orange squash). Paired t tests were conducted for TT performance. Hematological data (blood bicarbonate and blood lactate) and gastrointestinal discomfort were analyzed using repeated-measures analysis of variance. Results: Performance was faster for CWSB versus IWSB (5.0 [6.1] s; P = .052) and CWP (5.8 [6.0] s; P = .03). Pre-TT bicarbonate concentration was elevated for CWSB versus IWSB (+9.3 mmol·L−1; P < .001) and CWP (+7.1 mmol·L−1; P < .001). Post-TT blood lactate concentration was elevated for CWSB versus CWP (+2.52 mmol·L−1; P = .022). Belching was exacerbated pre-warm-up for IWSB versus intermittent warm-up +placebo (P = .046) and CWP (P = .027). Conclusion: An intermittent, sprint-based warm-up mitigated the ergogenic benefits of NaHCO3 ingestion on 4-km cycling TT performance.

Gurton, Faulkner, and James are with the Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom. Faulkner is also with the SPEED Laboratory, Dept of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.

James (ruth.james@ntu.ac.uk) is corresponding author.
  • 1.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:

  • 2.

    Sahlin K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014;44:167173. doi:

  • 3.

    Fitts R. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):23352338. PubMed ID: 27755382 doi:

  • 4.

    Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance. Sports Med. 2011;41(10):801814. PubMed ID: 21923200 doi:

  • 5.

    Siegler JC, Marshall PW, Bishop D, Shaw G, Green S. Mechanistic insights into the efficacy of sodium bicarbonate supplementation to improve athletic performance. Sports Med Open. 2016;2(1):41. PubMed ID: 27747796 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gough LA, Deb SK, Brown D, Sparks SA, McNaughton LR. The effects of sodium bicarbonate ingestion on cycling performance and acid base balance recovery in acute normobaric hypoxia. J Sports Sci. 2019;37(13):14641471. PubMed ID: 30668281 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sostaric SM, Skinner SL, Brown MJ, et al. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol. 2006;570(1):185205. PubMed ID: 16239279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Callahan MJ, Parr EB, Hawley JA, Burke LM. Single and combined effects of beetroot crystals and sodium bicarbonate on 4-km cycling time trial performance. Int J Sport Nutr Exerc Metab. 2017;27(3):271278. PubMed ID: 27834492 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R, et al. Acidosis, but not alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc. 2017;49(9):18991910. PubMed ID: 28398947 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gough LA, Deb SK, Sparks A, McNaughton LR. The reproducibility of 4-km time trial (TT) performance following individualised sodium bicarbonate supplementation: a randomised controlled trial in trained cyclists. Sports Med Open. 2017;3(1):110. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Miller P, Robinson AL, Sparks SA, Bridge CA, Bentley DJ, McNaughton LR. The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. J Strength Cond Res. 2016;30(2):561568. PubMed ID: 26815179 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gough LA, Deb SK, Sparks SA, McNaughton LR. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. J Sports Sci. 2018;36(15):17051712. PubMed ID: 29183257 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hilton NP, Leach NK, Sparks SA, et al. A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: a randomised crossover study in trained males. Sports Med Open. 2019;5(1):4. PubMed ID: 30680463 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kilding AE, Overton C, Gleave J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sport Nutr Exerc Metab. 2012;22(3):175183. PubMed ID: 22693238 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tan F, Polglaze T, Cox G, Dawson B, Mujika I, Clark S. Effects of induced alkalosis on simulated match performance in elite female water polo players. Int J Sport Nutr Exerc Metab. 2010;20(3):198205. PubMed ID: 20601737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cameron SL, McLay-Cooke RT, Brown RC, Gray AR, Fairbairn KA. Increased blood pH but not performance with sodium bicarbonate supplementation in elite rugby union players. Int J Sport Nutr Exerc Metab. 2010;20(4):307321. PubMed ID: 20739719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Christensen PM, Bangsbo J. Warm-Up strategy and high-intensity endurance performance in trained cyclists. Int J Sports Physiol. 2015;10(3):353360. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol. 2013;8(2):111122. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Reilly T. Human circadian rhythms and exercise. Crit Rev Biomed Eng. 1990;18:165180. PubMed ID: 2286092

  • 20.

    McNair DM. Manual Profile of Mood States. San Diego, CA: Educational & Industrial Testing Service; 1971.

  • 21.

    Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193213. PubMed ID: 2748771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gurton WH, Gough LA, Sparks SA, Faghy MA, Reed KE. Sodium bicarbonate ingestion improves time-to-exhaustion cycling performance and alters estimated energy system contribution: a dose-response investigation. Front Nutr. 2020;7:154. PubMed ID: 33015125 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lloyd P. Strong ion calculator—a practical bedside application of modern quantitative acid-base physiology. Crit Care Resusc. 2004;6:285294. PubMed ID: 16556109

    • Search Google Scholar
    • Export Citation
  • 24.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998; 26(4):217238. PubMed ID: 9820922 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lix LM, Sajobi T. Testing multiple outcomes in repeated measures designs. Psychol Methods. 2010;15(3):268280. PubMed ID: 20822252 doi:

  • 26.

    Hopkins WG. How to interpret changes in an athletic performance test. Sport Sci. 2004;8:17.

  • 27.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    de Oliveira LF, Saunders B, Yamaguchi G, Swinton P, Artioli GG. Is individualization of sodium bicarbonate ingestion based on time to peak necessary? Med Sci Sports Exerc. 2020;52(8):18011808. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Messonnier L, Kristensen M, Juel C, Denis C. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol. 2007;102(5):19361944. PubMed ID: 17289910 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 746 746 199
Full Text Views 13 13 9
PDF Downloads 8 8 7