Effect of Previous-Day Alcohol Ingestion on Muscle Function and Performance of Severe-Intensity Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: Many athletes report consuming alcohol the day before their event, which might negatively affect their performance. However, the effects of previous-day alcohol ingestion on performance are equivocal, in part, due to no standardization of alcohol dose in previous studies. The purpose of this study was to examine the impact of a standardized previous-day alcohol dose and its corresponding impact on morning-after muscular strength, muscular power, and muscular fatigue in a short-duration test and on performance of severe-intensity exercise. Methods: On 2 occasions, 12 recreationally active individuals reported to the Applied Physiology Laboratory in the evening and ingested a beverage containing either 1.09 g ethanol·kg−1 fat-free body mass (ALC condition) or water (PLA condition). The following morning, they completed a hangover symptom questionnaire, vertical jumps, isometric midthigh pulls, biceps curls, and a constant-power cycle ergometer test to exhaustion. The responses from ALC and PLA were compared using paired-means t tests. Results: Time to exhaustion in the cycle ergometer tests was less (P = .03) in the ALC condition (181 [39] s vs 203 [34] s; –11%, Cohen d = 0.61). There was no difference in performance in vertical jump test, isometric midthigh pulls, and biceps curls tests between the ALC and PLA conditions. Conclusions: Previous-day alcohol consumption significantly reduces morning-after performance of severe-intensity exercise. Practitioners should educate their athletes, especially those whose events rely on anaerobic capacity and/or a rapid response of the aerobic pathways, of the adverse effect of previous-day alcohol consumption on performance.

The authors are with the Applied Physiology Laboratory, Dept of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA; Levitt and Vingren are also with the Dept of Biological Sciences at the university. Levitt is also with the Dept of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Levitt (dlevit@lsuhsc.edu) is corresponding author.
  • 1.

    Nelson TF, Wechsler H. Alcohol and college athletes. Med Sci Sports Exerc. 2001;33:4347. PubMed ID: 11194110 doi:

  • 2.

    Green GA, Uryasz FD, Petr TA, Bray CD. NCAA study of substance use and abuse habits of college student-athletes. Clin J Sport Med. 2001;11(1):51. PubMed ID: 11176146 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vella LD, Cameron-Smith D. Alcohol, athletic performance and recovery. Nutrients. 2010;2(8):781789. PubMed ID: 22254055 doi:

  • 4.

    Barnes MJ. Alcohol: impact on sports performance and recovery in male athletes. Sports Med. 2014;44(7):909919. PubMed ID: 24748461 doi:

  • 5.

    O’Brien CP, Lyons F. Alcohol and the athlete. Sports Med. 2000;29:295300. PubMed ID: 10840864 doi:

  • 6.

    Levitt DE, Duplanty AA, Budnar RG, et al. . The effect of post-resistance exercise alcohol ingestion on lipopolysaccharide-stimulated cytokines. Eur J Appl Physiol. 2016;116(2):311318. PubMed ID: 26501345 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Levitt DE, Luk HY, Duplanty AA, McFarlin BK, Hill DW, Vingren JL. Effect of alcohol after muscle damaging resistance exercise on muscle performance recovery and inflammatory capacity in women. Eur J Appl Physiol. 2017;117(6):11951206. PubMed ID: 28386694 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Duplanty AA, Budnar RG, Luk HY, et al. . Effect of acute alcohol ingestion one resistance exercise-induced mTORC1 signaling in human muscle. J Strength Cond Res. 2017;31(1):5461. PubMed ID: 27135475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Vingren JL, Hill DW, Buddhadev HH, Duplanty AA. Post-exercise resistance exercise ethanol ingestion and acute testosterone availability. Med Sci Sports Exerc. 2013;45(9):18251832. PubMed ID: 23470309 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG. AUDIT: The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Health Care. Geneva, Switzerland: World Health Organization; 2001. Document no. WHO/MSD/MSB/01.6a.

    • Search Google Scholar
    • Export Citation
  • 11.

    U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020. 2015. https://health.gov/dietaryguidelines/2015/guidelines/appendix-9/. Accessed September 10, 2017.

    • Search Google Scholar
    • Export Citation
  • 12.

    Hill DW. Morning–evening differences in response to exhaustive severe-intensity exercise. Appl Physiol Nutr Metab. 2014;39(2):248254. PubMed ID: 24476482 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Harris JS, Benedict FG. A Biometrical Study of Basal Metabolism in Man. Washington, DC: Carnegie Institution; 1919.

  • 14.

    Slutske WS, Piasecki TM, Hunt-Carter EE. Development and initial validation of the hangover symptoms scale: prevalence and correlates of hangover symptoms in college students. Alcohol Clin Exp Res. 2003;27(9):14421450. PubMed ID: 14506405 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377381. PubMed ID: 7154893 doi:

  • 16.

    Hill DW. Strategies to ensure accurate calculation of parameters of the VO2 response during heavy-intensity exercise. Int J Sport Studies Health. 2019;2(2):e98161. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R218R224. PubMed ID: 21490368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Noordhof DA, de Koning JJ, Foster C. The maximal accumulated oxygen deficit method. Sports Med. 2010;40(4):285302. PubMed ID: 20364874 doi:

  • 19.

    Medbø JI, Mohn AC, Tabata I, et al. . Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:5060. PubMed ID: 3356666 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hill DW, Vingren JL. Maximal accumulated oxygen deficit in running and cycling. Appl Physiol Nutr Metab. 2011;36(6):831838. PubMed ID: 22050108 doi:

  • 21.

    Hill DW, Vingren JL. The effect of pedalling cadence on maximal accumulated oxygen deficit. Eur J Appl Physiol. 2012;112(7):26372643. PubMed ID: 22085979 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Riojas AE, Valenzuela JR, McFarlin BK, Vingren JL, Hill DW. The increase in oxygen demand during severe intensity exercise must be included in calculation of oxygen deficit. Int J Exerc Sci. 2020;13(4):645655. PubMed ID: 32509126

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Karvinen E, Miettinen M, Ahlman K. Physical performance during hangover. Q J Stud Alcohol. 1962;23(2):208215. PubMed ID: 14454097 doi:

  • 24.

    O’Brien CP. Alcohol and sport. Impact of social drinking on recreational and competitive sports performance. Sports Med. 1993;15(2):7177. PubMed ID: 8446825 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kruisselbrink LD, Martin KL, Megeney M, Fowles J, Murphy RJL. Physical and psychomotor functioning of females the morning after consuming low to moderate quantities of beer. J Stud Alcohol. 2006;67(3):416420. PubMed ID: 16608151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Palmer CS, Ostrowski M, Balderson B, Christian M, Crowe S. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1. PubMed ID: 25657648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Finlay DK. Regulation of glucose metabolism in T cells: new insight into the role of Phosphoinositide 3-kinases. Front Immunol. 2012;3:247. PubMed ID: 22891069 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gao Y, Zhou Z, Ren T, et al. . Alcohol inhibits T-cell glucose metabolism and hepatitis in ALDH2-deficient mice and humans: roles of acetaldehyde and glucocorticoids. Gut. 2019;68(7):13111322. PubMed ID: 30121625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Prentice C, Stannard SR, Barnes MJ. Effects of heavy episodic drinking on physical performance in club level rugby union players. J Sci Med Sport. 2015;18(3):268271. PubMed ID: 24820258 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Verster JC, Kruisselbrink LD, Slot KA, et al. . Sensitivity to experiencing alcohol hangovers: reconsideration of the 0.11% blood alcohol concentration (BAC) threshold for having a hangover. J Clin Med. 2020;9(1):179. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1712 1712 279
Full Text Views 26 26 3
PDF Downloads 27 27 5