Limiting Rise in Heat Load With an Ice Vest During Elite Female Rugby Sevens Warm-Ups

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To determine the effect of wearing a phase-change cooling vest in elite female rugby sevens athletes during (1) a simulated match-day warm-up in hot conditions prior to a training session and (2) a prematch warm-up during a tournament in cool conditions. Methods: This study consisted of 2 randomized independent group designs (separated by 16 d) where athletes completed the same 23- to 25-minute match-day warm-up (1) in hot conditions (range = 28.0°C to 35.1°C wet bulb globe temperature [WBGT]) prior to training and (2) in cool conditions (range = 18.8°C to 20.1°C WBGT) prior to a World Rugby Women’s Sevens Series match. In both conditions, athletes were randomly assigned to wearing either (1) the standardized training/playing ensemble (synthetic rugby shorts and training tee/jersey) or (2) the standardized training/playing ensemble plus a commercial phase-change athletic cooling vest. Group-wise differences in core temperature rise from baseline, global positioning system–measured external locomotive output, and perceptual thermal load were compared. Results: Core temperature rise during a match warm-up was lower in the hot condition only (−0.65°C [95% confidence interval = −1.22°C to −0.08°C], ηp2=.23 [95% confidence interval = .00 to .51], P = .028). No differences in various external-load variables were observed. Conclusions: Phase-change cooling vests can be worn by athletes prior to, and during, a prematch warm-up in hot conditions to limit excess core temperature rise without adverse effects on thermal perceptions or external locomotion output.

Henderson, Fransen, Coutts, and Taylor are with the Faculty of Health, School of Sport, Exercise and Rehabilitation and the Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, NSW, Australia. Henderson is also with Australian Rugby Sevens, Rugby Australia (RA), Sydney, NSW, Australia. Chrismas is with the Sport Science Program, College of Arts and Science, Qatar University, Doha, Qatar. Stevens is with the School of Health and Human Sciences, Southern Cross University, Coffs Harbour, NSW, Australia. Taylor is also with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom, and Qatar Orthopedic and Sports Medicine Hospital, Athlete Health and Performance Research Center, ASPETAR, Doha, Qatar.

Taylor (l.taylor2@lboro.ac.uk) is corresponding author.
  • 1.

    Cheung S, Sleivert G. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev. 2004;32(3):100106. PubMed ID: 15243205 doi:

  • 2.

    Sunderland C, Nevill ME. High-intensity intermittent running and field hockey skill performance in the heat. J Sports Sci. 2005;23(5):531540. PubMed ID: 16195001 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Martin K, McLeod E, Périard J, Rattray B, Keegan R, Pyne DB. The impact of environmental stress on cognitive performance: a systematic review. Hum Factors. 2019;61(8):12051246. PubMed ID: 31002273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nybo L, Rasmussen P, Sawka M. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4:657689. PubMed ID: 24715563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Girard O, Brocherie F, Bishop DJ. Sprint performance under heat stress: a review. Scand J Med Sci Sports. 2015;25(suppl 1):7989. doi:

  • 6.

    Racinais S, Alonso JM, Coutts AJ, et al. . Consensus recommendations on training and competing in the heat. Br J Sports Med. 2015;49(18):11641173. PubMed ID: 26069301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Casadio JR, Kilding AE, Cotter JD, Laursen PB. From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 2017;47(8):14671476. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med. 2013;49(1):713. PubMed ID: 23945034 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Taylor L, Carter S, Stellingwerff T. Cooling at Tokyo 2020: the why and how for endurance and team sport athletes. Br J Sports Med. 2020;54(21):12431245. PubMed ID: 32816792 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ross A, Gill N, Cronin J. The match demands of international rugby sevens. J Sports Sci. 2015;33(10):10351041. PubMed ID: 25555035 doi:

  • 11.

    Clarke AC, Anson JM, Pyne DB. Game movement demands and physical profiles of junior, senior and elite male and female rugby sevens players. J Sports Sci. 2017;35(8):727733. PubMed ID: 27214399 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Henderson MJ, Chrismas BCR, Stevens CJ, Coutts AJ, Taylor L. Changes in core temperature during an elite female rugby sevens tournament. Int J Sports Physiol Perform. 2020;15(4):571580. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Taylor L, Stevens CJ, Thornton HR, Poulos N, Chrismas BCR. Limiting the rise in core temperature during a rugby sevens warm-up with an ice vest. Int J Sports Physiol Perform. 2019;14(9):12121218. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Giersch GEW, Morrissey MC, Katch RK, et al. . Menstrual cycle and thermoregulation during exercise in the heat: a systematic review and meta-analysis. J Sci Med Sport. 2020;23(12):11341140. PubMed ID: 32499153 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kaciuba-Uscilko H, Grucza R. Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care. 2001;4(6):533536. PubMed ID: 11706289 doi:

  • 16.

    Kakamu T, Wada K, Smith DR, Endo S, Fukushima T. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 summer Olympic Games. Environ Health Prev Med. 2017;22(1):68. PubMed ID: 29165162 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Taylor L, Thornton HR, Lumley N, Stevens CJ. Alterations in core temperature during World Rugby Sevens Series tournaments in temperate and warm environments. Eur J Sport Sci. 2018;19(4):432441. PubMed ID: 30305001 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Byrne C, Lim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 2007;41(3):126133. PubMed ID: 17178778 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Travers GJS, Nichols DS, Farooq A, Racinais S, Périard JD. Validation of an ingestible temperature data logging and telemetry system during exercise in the heat. Temperature. 2016;3(2):208219. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bongers C, Daanen HAM, Bogerd CP, Hopman MTE, Eijsvogels TMH. Validity, reliability, and inertia of four different temperature capsule systems. Med Sci Sports Exerc. 2018;50(1):169175. PubMed ID: 28816921 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Henderson MJ, Chrismas BCR, Stevens CJ, et al. . Additional clothing increases heat load in elite female rugby sevens players. Published online March 26, 2021. Int J Sports Physiol Perform. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thornton HR, Nelson AR, Delaney JA, Serpiello FR, Duthie GM. Interunit reliability and effect of data-processing methods of global positioning systems. Int J Sports Physiol Perform. 2019;14(4):432438. PubMed ID: 30204529 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Young AJ, Sawka MN, Epstein Y, Decristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. PubMed ID: 3654466 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 25.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 26.

    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:

  • 27.

    Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983997. PubMed ID: 9333350 doi:

  • 28.

    Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):14941502. PubMed ID: 27620283 doi:

  • 29.

    Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133142. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ben-Shachar MS, Makowski D, Lüdecke D. Compute and interpret indices of effect size. R Package. 2020. https://github.com/easystats/effectsize.

    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 32.

    Périard JD, Racinais S, Knez WL, Herrera CP, Christian RJ, Girard O. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress. Br J Sports Med. 2014;48(suppl 1):i32.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Stephens J, Argus C, Driller M. The relationship between body composition and thermal responses to hot and cold water immersion. J Hum Perform Extreme Environ. 2014;11:1.

    • Search Google Scholar
    • Export Citation
  • 34.

    Knief U, Forstmeier W. Violating the normality assumption may be the lesser of two evils. BioRxiv. Preprint published online May 5, 2020. doi:

  • 35.

    Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand. 2005;183(2):181190. PubMed ID: 15676059 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 485 485 56
Full Text Views 14 14 0
PDF Downloads 10 10 0