The Effects of an Acute “Train-Low” Nutritional Protocol on Markers of Recovery Optimization in Endurance-Trained Male Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study aimed to determine the effects of an acute “train-low” nutritional protocol on markers of recovery optimization compared to standard recovery nutrition protocol. Methods: After completing a 2-hour high-intensity interval running protocol, 8 male endurance athletes consumed a standard dairy milk recovery beverage (CHO; 1.2 g/kg body mass [BM] of carbohydrate and 0.4 g/kg BM of protein) and a low-carbohydrate (L-CHO; isovolumetric with 0.35 g/kg BM of carbohydrate and 0.5 g/kg BM of protein) dairy milk beverage in a double-blind randomized crossover design. Venous blood and breath samples, nude BM, body water, and gastrointestinal symptom measurements were collected preexercise and during recovery. Muscle biopsy was performed at 0 hour and 2 hours of recovery. Participants returned to the laboratory the following morning to measure energy substrate oxidation and perform a 1-hour distance test. Results: The exercise protocol resulted in depletion of muscle glycogen stores (250 mmol/kg dry weight) and mild body-water losses (BM loss = 1.8%). Neither recovery beverage replenished muscle glycogen stores (279 mmol/kg dry weight) or prevented a decrease in bacterially stimulated neutrophil function (−21%). Both recovery beverages increased phosphorylation of mTORSer2448 (main effect of time = P < .001) and returned hydration status to baseline. A greater fold increase in p-GSK-3βSer9/total-GSK-3β occurred on CHO (P = .012). Blood glucose (P = .005) and insulin (P = .012) responses were significantly greater on CHO (618 mmol/L per 2 h and 3507 μIU/mL per 2 h, respectively) compared to L-CHO (559 mmol/L per 2 h and 1147 μIU/mL per 2 h, respectively). Rates of total fat oxidation were greater on CHO, but performance was not affected. Conclusion: A lower-carbohydrate recovery beverage consumed after exercise in a “train-low” nutritional protocol does not negatively impact recovery optimization outcomes.

Russo, Garnham, Porter, and Costa are with the Dept of Nutrition Dietetics & Food, Monash University, Clayton, VIC, Australia. Della Gatta and Porter are with the Inst for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia. Burke is with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia.

Costa (ricardo.costa@monash.edu) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (pdf 205 KB)
    • Supplementary Table 2 (pdf 361 KB)
  • 1.

    Burke LM, Hawley JA, Jeukendrup A, Morton JP, Stellingwerff T, Maughan RJ. Toward a common understanding of diet–exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. Int J Sport Nutr Exerc Metab. 2018;28(5):451463. PubMed ID: 30249148 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302(11):E1343E1351. PubMed ID: 22395109 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Russo I, Camões-Costa V, Gaskell SK, Porter J, Burke LM, Costa RJS. Systematic literature review: The effect of dairy milk on markers of recovery optimisation in response to endurance exercise. Int J Sports Sci. 2019;9(4):6985.

    • Search Google Scholar
    • Export Citation
  • 4.

    Impey SG, Hearris MA, Hammond KM, et al. . Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):10311048. PubMed ID: 29453741 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic retisulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(3):711725. PubMed ID: 21135051 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Costa RJS, Camões-Costa V, Snipe RMJ, Dixon D, Russo I, Huschtscha Z. The impact of a dairy milk recovery beverage on bacterially stimulated neutrophil function and gastrointestinal tolerance in response to hypohydration inducing exercise stress. Int J Sport Nutr Exerc Metab. 2020;30(4):237248. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Maughan RJ, Watson P, Cordery PA, et al. . Sucrose and sodium but not caffeine content influence the retention of beverages in humans under euhydrated conditions. Int J Sport Nutr Exerc Metab. 2019;29(1):5160. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Costa RJS, Walters R, Bilzon JL, Walsh NP. Effects of immediate postexercise carbohydrate ingestion with and without protein on neutrophil degranulation. Int J Sport Nutr Exerc Metab. 2011;21(3):205213. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Howarth KR, Phillips SM, MacDonald MJ, Richards D, Moreau NA, Gibala MJ. Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. J Appl Physiol. 2010;109(2):431438. PubMed ID: 20489032 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Costa RJS, Snipe RMJ, Kitic C, Gibson P. Systematic review: exercise-induced gastrointestinal syndrome—implication for health and disease. Aliment Ther Pharmacol. 2017;46(3):246265. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gaskell SK, Taylor B, Muir J, Costa RJS. Impact of 24-hour low and high fermentable oligo-, di-, mono-saccharide polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional-heat stress. Appl Physiol Nutr Metab. 2020;45(6):569580. PubMed ID: 31652404 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543568.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):20912102. PubMed ID: 29923148 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Costa RJ, Oliver SJ, Laing SJ, Walters R, Bilzon JL, Walsh NP. Influence of timing of postexercise carbohydrate-protein ingestion on selected immune indices. Int J Sport Nutr Exerc Metab. 2009;19(4):366384. PubMed ID: 19827462 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Costa RJS, Camões-Costa V, Snipe RMJ, Dixon D, Russo I, Huschtscha Z. Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J Appl Physiol. 2019;126(5):12811291. PubMed ID: 30896356 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Snipe RM, Khoo A, Kitic CM, Gibson PR, Costa RJ. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur J Appl Physiol. 2018;118(2):389400. PubMed ID: 29234915 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Snipe RM, Khoo A, Kitic CM, Gibson PR, Costa RJ. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int J Sports Med. 2018;39(4):255263. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Scheer V, Basset P, Giovanelli N, Vernillo G, Millet GP, Costa RJS. Defining Off-road running: a position statement from the ultra sports science foundation. Int J Sports Med. 2020;41(5):275284. PubMed ID: 32059243 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Duncan MJ, Smith M, Cook K, James RS. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res. 2012;26(10):28582865. PubMed ID: 22124354 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Snipe RMJ, Costa RJS. Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? J Sci Med Sport. 2018;21(8):771776. PubMed ID: 29371075 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gaskell SK, Snipe RMJ, Costa RJS. Test–retest reliability of a modified visual analog scale assessment tool for determining incidence and severity of gastrointestinal symptoms in response to exercise stress. Int J Sport Nutr Exerc Metab. 2019;29(4):411419. PubMed ID: 30632417

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Maughan RJ, Leiper JB. Sodium intake and post-exercise rehydration in man. Eur J Appl Physiol. 1995;71(4):311319. doi:

  • 23.

    Bergmeyer HU. Methods of Enzymatic Analysis. Verlag Chemie. 1974.

  • 24.

    Harris RC, Hultman E, Nordesjö LO. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Investig. 1974;33(2):109120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Alghannam AF, Jedrzejewski D, Bilzon J, Thompson D, Tsintzas K, Betts JA. Influence of post-exercise carbohydrate-protein ingestion on muscle glycogen metabolism in recovery and subsequent running exercise. Int J Sport Nutr Exerc Metab. 2016;26(6):572580. PubMed ID: 27097042 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Betts JA, Williams C, Boobis L, Tsintzas K. Increased carbohydrate oxidation after ingesting carbohydrate with added protein. Med Sci Sports Exerc. 2008;40(5):491496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Camera DM, Hawley JA, Coffey VG. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle. Eur J Appl Physiol. 2015;115(6):11851194. PubMed ID: 25650067 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Rad Biol Med. 2016;98(98):131143. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155161. PubMed ID: 19543909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Oliver SJ, Laing SJ, Wilson S, Bilzon JL, Walsh NP. Endurance running performance after 48 h of restricted fluid and/or energy intake. Med Sci Sport Exerc. 2007;39(2):316322. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Bennett CJ, Henry R, Snipe RM, Costa RJ. Is the gut microbiota bacterial abundance and composition associated with intestinal epithelial injury, systemic inflammatory profile, and gastrointestinal symptoms in response to exertional-heat stress? J Sci Med Sport. 2020;23(12):11411153. PubMed ID: 32620352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bate JP, Irving PM, Barrett JS, Gibson PR. Benefits of breath hydrogen testing after lactulose administration in analysing carbohydrate malabsorption. Eur J Gastroenterol Hepatol. 2010;22(3):318326. PubMed ID: 19636251 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bowtell JL, Gelly K, Jackman ML, Patel A, Simeoni M, Rennie MJ. Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. J Appl Physiol. 1999;86(6):17701777. PubMed ID: 10368336 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bowtell JL, Gelly K, Jackman ML, Patel A, Simeoni M, Rennie MJ. Effect of different carbohydrate drinks on whole body carbohydrate storage after exhaustive exercise. J Appl Physiol. 2000;88(5):15291536. PubMed ID: 10797108 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Burke LM, Castell L, Casa D, et al. . International association of athletics federations consensus statement 2019: nutrition for athletics. Int J Sports Nutr Exerc Metab. 2019;29(2)7384. PubMed ID: 30952204 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Asp S, Daugaard JR, Richter EA. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J Physiol. 1995;482(3):705712. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Impey SG, Hammond KM, Shepherd SO, et al. . Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiol Rep. 2016;4(10):e12803. PubMed ID: 27225627 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Yeo WK, Paton CD, Garnham A, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105(5):14621470. PubMed ID: 18772325 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Widrick JJ, Costill DL, Fink WJ, Hickey MS, McConell GK, Tanaka H. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol. 1993;74(6):29983005. PubMed ID: 8365999 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Moore DR, Camera DM, Areta JL, Hawley JA. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab. 2014;39(9):987997. PubMed ID: 24806440 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Glynn EL, Fry CS, Drummond MJ, et al. . Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2020;299(2):R533R540. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Marquet LA, Brisswalter J, Louis J, et al. . Enhanced endurance performance by periodization of CHO intake: “Sleep Low” strategy. Med Sci Sports Exerc. 2016;48(4):663672. PubMed ID: 26741119 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Rumessen JJ, Gudmand-Høyer E. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. Gut. 1986;27(10):11611168. PubMed ID: 3781328 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Barrett JS, Irving PM, Shepherd SJ, Muir JG, Gibson PR. Comparison of the prevalence of fructose and lactose malabsorption across chronic intestinal disorders. Aliment Ther Pharmacol. 2009;30(2):165174. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Costa RJS, Miall A, Khoo A, et al. . Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42(5):547557. PubMed ID: 28177715 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Waskiw-Ford M, Hannaian S, Duncan J, et al. . Leucine-enriched essential amino acids improve independent of increases in integrated myofibrillar protein synthesis in young men. Nutrients. 12(4):1061. PubMed ID: 32290521 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1136 1136 118
Full Text Views 33 33 1
PDF Downloads 22 22 1