Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To develop gender-specific operational equations for prediction of cardiorespiratory fitness in female footballers. Method: Forty-eight semiprofessional female footballers performed an intermittent progressive maximal running test for determination of fixed blood lactate concentration (FBLC) thresholds. Relationships between FBLC thresholds and the physiological responses to submaximal running were examined. Developed equations (n = 48) were compared with equations previously obtained in another investigation performed in males (n = 100). Results: Submaximal velocity associated with 90% maximal heart rate was related to FBLC thresholds (r = .76 to .79; P < .001). Predictive power (R 2 = .82 to .94) of a single blood lactate concentration (BLC) sample measured at 10 or 11.5 km·h−1 was very high. A single BLC sample taken after a 5-minute running bout at 8.5 km·h−1 was related to FBLC thresholds (r = −.71; P < .001). No difference (P = .15) in the regression lines predicting FBLC thresholds from velocity associated with 90% maximal heart rate was observed between the female and male cohorts. However, regressions estimating FBLC thresholds by a single BLC sample were different (P = .002). Conclusions: Velocity associated with 90% maximal heart rate was robustly related to FBLC thresholds and might serve for mass field testing independently of sex. BLC equations accurately predicted FBLC thresholds. However, these equations are gender-specific. This is the first study reporting operational equations to estimate the FBLC thresholds in female footballers. The use of these equations reduces the burden associated with cardiorespiratory testing. Further cross-validation studies are warranted to validate the proposed equations and establish them for mass field testing.

Garcia-Tabar, Iturricastillo, and Castellano are with the Dept of Physical Education and Sport, Society, Sports and Physical Exercise Research Group (GIKAFIT), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. Garcia-Tabar and Iturricastillo are also with Biobara, GIKAFIT, Vitoria-Gasteiz, Basque Country, Spain. Cadore is with the Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Izquierdo and Setuain are with the Dept of Health Sciences, Navarra Inst for Health Research (IdiSNA), Public University of Navarra (UPNA), Pamplona, Spain. Setuain is also with the Clinical Research Dept, TDN, Advanced Rehabilitation Center, Pamplona, Spain.

Iturricastillo (aitor.iturricastillo@ehu.eus) is corresponding author.
  • 1.

    Cardoso de Araújo M, MieBen K. Twenty years of the FIFA women’s world cup: An outstanding evolution of competitiveness. Women Sport Phys Activ J. 2017;25(1):6064. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Krustrup P, Mohr M, Ellingsgaard H, Bangsbo J. Physical demands during an elite female soccer game: Importance of training status. Med Sci Sports Exerc. 2005;37(7):12421248. PubMed ID: 16015145 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mohr M, Krustrup P, Andersson H, Kirkendal D, Bangsbo J. Match activities of elite women soccer players at different performance levels. J Strength Cond Res. 2008;22(2):341349. PubMed ID: 18550946 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lacome M, Simpson B, Broad N, Buchheit M. Monitoring players’ readiness using predicted heart-rate responses to soccer drills. Int J Sports Physiol Perform. 2018;13(10):12731280. PubMed ID: 29688115 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Castagna C, Impellizzeri FM, Chamari K, Carlomagno D, Rampinini E. Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: a correlation study. J Strength Cond Res. 2006;20(2):320325. PubMed ID: 16689621 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Garcia-Tabar I, Rampinini E, Gorostiaga EM. Lactate equivalent for maximal lactate steady state determination in soccer. Res Q Exerc Sport. 2019;90(4):678689. PubMed ID: 31479401 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Iannetta D, Inglis EC, Mattu AT, et al. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sports Exerc. 2020;52(2):466473. PubMed ID: 31479001 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garcia-Tabar I, Gorostiaga EM. A “blood relationship” between the overlooked minimum lactate equivalent and maximal lactate steady state in trained runners. back to the old days? Front Physiol. 2018;9:1034. PubMed ID: 30108519 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Buchheit M, Simpson BM, Lacome M. Monitoring cardiorespiratory fitness in professional soccer players: is it worth the prick? Int J Sports Physiol Perform. 2020:15. [Epub ahead of print]. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cardoso de Araujo M, Baumgart C, Jansen CT, Freiwald J, Hoppe MW. Sex differences in physical capacities of german bundesliga soccer players. J Strength Cond Res. 2020;34(8):23292337. PubMed ID: 29927885 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Garcia-Tabar I, Llodio I, Sanchez-Medina L, Ruesta M, Ibanez J, Gorostiaga EM. Heart rate-based prediction of fixed blood lactate thresholds in professional team-sport players. J Strength Cond Res. 2015;29(10):27942801. PubMed ID: 25844867 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Weltman A, Snead D, Stein P, et al. Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. Int J Sports Med. 1990;11(1):2632. PubMed ID: 2318561 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ellis M, Penny R, Wright B, Noon M, Myers T, Akubat I. The dose-response relationship between training load measures and aerobic fitness in elite academy soccer players. Sci Med Football. 2021;5(2):128136. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Baumgart C, Hoppe MW, Freiwald J. Different endurance characteristics of female and male german soccer players. Biol Sport. 2014;31(3):227232. PubMed ID: 25177102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol. 2021;105(12):20072021. PubMed ID: 33002256 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Impellizzeri FM, Mognoni P, Sassi A, Rampinini E. Validity of a submaximal running test to evaluate aerobic fitness changes in soccer. In: Reilly T, Cabri J, Araújo D, eds. Science and Football V. The Proceedings of the Fifth World Congress on Science and Football. Routledge: Abingdon; 2005:105111.

    • Search Google Scholar
    • Export Citation
  • 17.

    Garcia-Tabar I, Izquierdo M, Gorostiaga EM. On-field prediction vs monitoring of aerobic capacity markers using submaximal lactate and heart rate measures. Scand J Med Sci Sports. 2017;27(5):462473. PubMed ID: 28181710 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Granados C, Izquierdo M, Ibanez J, Ruesta M, Gorostiaga EM. Effects of an entire season on physical fitness in elite female handball players. Med Sci Sports Exerc. 2008;40(2):351361. PubMed ID: 18202565 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Buchheit M. Monitoring training status with HR measures: do all roads lead to rome? Front Physiol. 2014;5:73. PubMed ID: 24578692 doi:

  • 20.

    Hedges LV. Distribution theory for glass’s estimator of effect size and related estimators. J Educ Behav Stat. 1981;6(2):107128. doi:

  • 21.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Andrade JM, Estevez-Perez MG. Statistical comparison of the slopes of two regression lines: a tutorial. Anal Chim Acta. 2014;838:112. PubMed ID: 25064237 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Foster C, Fitzgerald DJ, Spatz P. Stability of the blood lactate-heart rate relationship in competitive athletes. Med Sci Sports Exerc. 1999;31(4):578582. PubMed ID: 10211855 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rabbani A, Kargarfard M, Twist C. Fitness monitoring in elite soccer players: Group vs. individual analyses. J Strength Cond Res. 2018. doi: [Epub ahead of print]

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Garcia-Tabar I, Llodio I, Sanchez-Medina L, Asiain X, Ibanez J, Gorostiaga EM. Validity of a single lactate measure to predict fixed lactate thresholds in athletes. J Sports Sci. 2017;35(4):385392. PubMed ID: 27028245 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol. 1990;68(1):302308. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hurley BF, Hagberg JM, Allen WK, et al. Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(5):12601264. PubMed ID: 6725086 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lamberts RP, Lemmink KA, Durandt JJ, Lambert MI. Variation in heart rate during submaximal exercise: Implications for monitoring training. J Strength Cond Res. 2004;18(3):641645. PubMed ID: 15320683 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Buchheit M, Chivot A, Parouty J, et al. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol. 2010;108(6):11531167. PubMed ID: 20033207 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Scharhag-Rosenberger F, Meyer T, Gäßler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. J Sci Med Sport. 2010;13(1):7479. PubMed ID: 19230766 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):17291756. PubMed ID: 32729096 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 294 294 150
Full Text Views 10 10 6
PDF Downloads 17 17 12